Wikipedia:WikiProject Mathematics/PlanetMath Exchange/46-XX Functional analysis: Difference between revisions
Content deleted Content added
TakuyaMurata (talk | contribs) symmetric set; copied |
Anomalocaris (talk | contribs) m properly open italics ('') (preserving intent not appearance); <sup><font>...</font></sup> → <sup style>...</sup> |
||
(One intermediate revision by one other user not shown) | |||
Line 4:
==46-00 General reference works (handbooks, dictionaries, bibliographies, etc.)==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4434 T_f is a distribution of zeroth order], id=4434 -- WP: [[Distribution (mathematics)|Distribution]] -- Status:
::PM article is a proof which is not included in WP; WP doesn't even define the ''order'' of a distribution. [[User:Jitse Niesen|Jitse Niesen]] 13:32, 31 Jan 2005 (UTC)
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4473 \operatorname{p.\!v.}(\frac{1}{x}) is a distribution of first order], id=4473 -- WP: [[Distribution (mathematics)|distribution]] -- Status:
::PM article is a proof which is not included in WP; p.v. (1/x) is a nice example of a distribution which should be mentioned in WP. Connection with [[renormalization]]? [[User:Jitse Niesen|Jitse Niesen]] 13:32, 31 Jan 2005 (UTC)
Line 30:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4468 delta distribution], id=4468 -- WP guess: [[delta distribution]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4427 distribution], id=4427 -- WP guess: [[Distribution (mathematics)|distribution]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4433 every locally integrable function is a distribution], id=4433 -- WP guess: [[every locally integrable function is a distribution]] -- Status:
Line 62:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6723 weak convergence], id=6723 -- WP guess: [[weak convergence]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8219 Hilbert basis], id=8219<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9771 invariant subspace problem], id=9771<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8208 modular mappings in vector spaces over the field of complex numbers], id=8208<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8374 modular space], id=8374<sup
==46A03 General theory of locally convex spaces==
Line 79:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6855 weak-* topology], id=6855 -- WP guess: [[weak-* topology]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9703 anti-cone], id=9703<sup
==46A08 Barrelled spaces, bornological spaces==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8902 barrel], id=8902<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8003 bornological space], id=8003<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8004 bounded set], id=8004<sup
==46A20 Duality theory==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9667 hyperplane separation], id=9667<sup
==46A30 Open mapping and closed graph theorems; completeness (including $B$-, $B r$-completeness)==
Line 126:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6911 proof of Heine-Cantor theorem], id=6911 -- WP guess: [[proof of Heine-Cantor theorem]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9857 Riesz representation theorem (of linear functionals on function spaces)], id=9857<sup
==46Axx Topological linear spaces and related structures==
Line 136:
==46B04 Isometric theory of Banach spaces==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8524 Mazur-Ulam theorem], id=8524<sup
==46B07 Local theory of Banach spaces==
Line 176:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6967 sub-linear], id=6967 -- WP guess: [[sub-linear]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9087 Golab's theorem], id=9087<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9086 normed plane], id=9086<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8823 nuclear space], id=8823<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7704 properties of Minkowski's functional], id=7704<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=92 vector p-norm], id=92<sup
==46B25 Classical Banach spaces in the general theory==
Line 197:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4455 Schauder fixed point theorem], id=4455 -- WP guess: [[Schauder fixed point theorem]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8125 Tychonoff fixed point theorem], id=8125<sup
==46B99 Miscellaneous==
Line 239:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7092 shift operators in \ell^p], id=7092 -- WP guess: [[shift operators in \ell^p]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9864 approximation property], id=9864<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9751 necessary and sufficient conditions for a normed vector space to be a Banach space], id=9751<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9749 quotient norm], id=9749<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9750 quotients of Banach spaces by closed subspaces are Banach spaces under the quotient norm], id=9750<sup
==46Bxx Normed linear spaces and Banach spaces; Banach lattices==
Line 273:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7271 \vert\langle Tv,v \rangle\vert \leq {\mu} \Vert v \Vert ^2 for all v implies \Vert T \Vert \leq {\mu}], id=7271 -- WP guess: [[\vert\langle Tv,v \rangle\vert \leq \mu \Vert v \Vert ^2 for all v implies \Vert T \Vert \leq \mu]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7691 example of non-separable Hilbert space], id=7691<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8227 generalization of the parallelogram law], id=8227<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8228 Hlawka's inequality], id=8228<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8205 parallelogram law], id=8205<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8229 proof of generalization of the parallelogram law], id=8229<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8211 proof of parallelogram law], id=8211<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7967 Schur's condition for a matrix to be a bounded operator on l^2], id=7967<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8214 yet another proof of parallelogram law], id=8214<sup
==46C15 Characterizations of Hilbert spaces==
Line 295:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6127 proof of classification of separable Hilbert spaces], id=6127 -- WP guess: [[proof of classification of separable Hilbert spaces]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8100 Banach spaces with complemented subspaces], id=8100<sup
==46C99 Miscellaneous==
Line 319:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=5971 wavelet set], id=5971 -- WP guess: [[wavelet set]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9448 Gabor frame], id=9448<sup
==46Cxx Inner product spaces and their generalizations, Hilbert spaces==
Line 348:
:: [[User:Oleg Alexandrov|Oleg Alexandrov]] ([[User talk:Oleg Alexandrov|talk]]) 04:10, 11 March 2006 (UTC)
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7667 generalization of Young inequality], id=7667<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9170 generalized Hölder inequality], id=9170<sup
==46E35 Sobolev spaces and other spaces of
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6601 Sobolev space], id=6601 -- WP: [[Sobolev space]] -- Status: '''A'''
Line 387:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=6395 higher order derivatives of sine and cosine], id=6395 -- WP guess: [[higher order derivatives of sine and cosine]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8221 Fréchet derivative is unique], id=8221<sup
==46Gxx Measures, integration, derivative, holomorphy (all involving infinite-dimensional spaces)==
Line 411:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7028 uniformly convex space is reflexive], id=7028 -- WP guess: [[uniformly convex space is reflexive]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9743 Gelfand transform], id=9743<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9871 Gelfand-Mazur theorem], id=9871<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9757 invertible elements in a Banach algebra form an open set], id=9757<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9737 multiplicative linear functional], id=9737<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9756 Neumann series in Banach algebras], id=9756<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8286 normed algebra], id=8286<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8141 rotund space], id=8141<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9791 spectrum is a non-empty compact set], id=9791<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8299 topological divisor of zero], id=8299<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=8295 topologically nilpotent], id=8295<sup
==46H15 Representations of topological algebras==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9843 Banach *-algebra representation], id=9843<sup
==46H35 Topological algebras of operators==
Line 449:
==46K10 Representations of topological algebras with involution==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9845 criterion for a Banach *-algebra representation to be irreducible], id=9845<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9844 representations of Banach *-algebras are continuous], id=9844<sup
==46Kxx Topological (rings and) algebras with an involution==
Line 467:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=4574 state], id=4574 -- WP guess: [[state]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9807 example of Banach algebra which is not a C^*-algebra for any involution], id=9807<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9862 special elements in a C^*-algebra and their spectral properties], id=9862<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9846 topologically irreducible representations are algebrically irreducible for C^*-algebras], id=9846<sup
==46L10 General theory of von Neumann algebras==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9868 polar decomposition in von Neumann algebras], id=9868<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9722 von Neumann algebra], id=9722<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9869 von Neumann algebras contain the range projections of its elements], id=9869<sup
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9870 von Neumann algebras of dimension greater than one contain non-trivial projections], id=9870<sup
==46L65 Quantizations, deformations==
Line 487:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7540 Quantization], id=7540 -- WP guess: [[Quantization]] -- Status:
* PM: [http://planetmath.org/?op=getobj&from=objects&id=7894 canonical quantization], id=7894<sup
==46L85 Noncommutative topology==
Line 510:
==46N99 Miscellaneous==
* PM: [http://planetmath.org/?op=getobj&from=objects&id=9629 Schwarzian derivative], id=9629<sup
==46Nxx Miscellaneous applications of functional analysis==
|