General hypergeometric function: Difference between revisions

Content deleted Content added
alt name
+short description
 
(One intermediate revision by one other user not shown)
Line 1:
{{short description|Hypergeometric function in mathematics}}
 
{{distinguish|generalized hypergeometric function}}
In mathematics, a '''general hypergeometric function''' or '''Aomoto–Gelfand hypergeometric function''' is a generalization of the [[hypergeometric function]] that was introduced by {{harvtxt|Gelfand|1986}}. The general hypergeometric function is a function that is (more or less) defined on a [[Grassmannian]], and depends on a choice of some complex numbers and signs.
Line 4 ⟶ 6:
==References==
 
*{{Citation | last1=Gelfand | first1=I. M. | authorlink=Israel Gelfand | title=General theory of hypergeometric functions | idmr={{MR|841131}} | year=1986 | journal=Doklady Akademii Nauk SSSR | issn=0002-3264 | volume=288 | issue=1 | pages=14–18}} (English translation in collected papers, volume III.)
* [[Kazuhiko Aomoto|Aomoto, K.]] (1975), "Les équations aux différences linéaires et les intégrales des fonctions multiformes", ''J. Fac. Sci. Univ. Tokyo, Sect. IA Math.'' '''22''', 271-229.
 
[[Category:hypergeometricHypergeometric functions]]