List of PSPACE-complete problems: Difference between revisions

Content deleted Content added
m Automata theory: fix common MOS:REFSPACE spacing errors, replaced: /ref> <ref → /ref><ref
 
(31 intermediate revisions by 21 users not shown)
Line 1:
{{shortShort description|Wikipedia list articlenone}}
{{dynamic list}}
{{use mdy dates|cs1-dates=ly|date=September 2022}}
 
Here are some of the more commonly known problems that are [[PSPACE-complete]] when expressed as [[decision problem]]s. This list is in no way comprehensive.
Line 7 ⟶ 8:
[[Generalized game|Generalized]] versions of:
{{div col |colwidth=18em}}
* [[Amazons (game)|Amazons]]<ref>{{cite arXiv | author = R. A. Hearn | author-link=Bob Hearn | title = Amazons is PSPACE-complete | date = 2005-02-02 | eprint = cs.CC/0502013 }}</ref>
* [[Atomix (computer game)|Atomix]]<ref>{{Cite journal | author = Markus Holzer and Stefan Schwoon | title = Assembling molecules in ATOMIX is hard | journal = Theoretical Computer Science | volume = 313 | issue = 3 |date=February 2004 | pages = 447–462 | doi = 10.1016/j.tcs.2002.11.002| doi-access = free }}</ref>
* [[Checkers]]<ref>Assuming if a draw is forced after a polynomial number of moves.non-jump moves<ref>{{cite journal | author = Aviezri S. Fraenkel | title = The complexity of checkers on an N x N board - preliminary report | volumejournal = Proceedings of the 19th Annual Symposium on Computer Science | pages = 55–64 | year = 1978}}</ref>
* [[Dyson Telescope Game]]<ref>{{cite book | author=Erik D. Demaine | title=The complexity of the Dyson Telescope Puzzle | volume = Games of No Chance 3 | year=2009}}</ref>
* [[TipOver|Cross Purposes]]<ref name="GONC3Hearn">{{cite journal | author = Robert A. Hearn | author-link = Bob Hearn | title=Amazons, Konane, and Cross Purposes are PSPACE-complete | volumejournal = Games of No Chance 3 | year=2008}}</ref>
* [[Generalized geography|Geography]]
* Two-player game version of [[Instant Insanity]]
* [[Ko rule|Ko]]-free [[Go (game)|Go]]<ref>{{cite journal | author = Lichtenstein | author2 = Sipser | title = Go is polynomial-space hard | journal = Journal of the Association for Computing Machinery | volume = 27 | issue=2 | pages = 393–401 | year = 1980 | doi = 10.1145/322186.322201| s2cid = 29498352 | doi-access = free }}</ref>
* [[Ladder (Go)|Ladder capturing in Go]]<ref name=goladder>[http://homepages.cwi.nl/~tromp/lad.ps Go ladders are PSPACE-complete] {{webarchive|url=https://web.archive.org/web/20070930044618/http://homepages.cwi.nl/~tromp/lad.ps |date=2007-09-30 }}</ref>
* [[m,n,k-game|Gomoku]]<ref name="Reisch1980">{{cite journal | author = Stefan Reisch | title = Gobang ist PSPACE-vollstandig (Gomoku is PSPACE-complete) | journal = Acta Informatica | volume = 13 | pages = 59–66 | year = 1980 | doi=10.1007/bf00288536| s2cid = 21455572 }}</ref>
* [[Hex (board game)|Hex]]<ref>{{cite journal | author = Stefan Reisch | title = Hex ist PSPACE-vollständig (Hex is PSPACE-complete) | journal = Acta Inform.Informatica | issue = 15 | year = 1981 | pages = 167&ndash;191167–191}}</ref>
* [[Konane]]<ref name="GONC3Hearn"/>
* [[Lemmings (video game)|Lemmings]]<ref>{{cite journal|last1=Viglietta|first1=Giovanni|title=Lemmings Is PSPACE-Complete|journal=Theoretical Computer Science|date=2015|volume=586|pages=120–134 |url=http://giovanniviglietta.com/papers/lemmings2.pdf|doi=10.1016/j.tcs.2015.01.055 |arxiv=1202.6581 |doi-access=free}}</ref>
* [[Node Kayles]]<ref name="AlgorithmicGameTheory">{{cite book | author=Erik D. Demaine | author2=Robert A. Hearn | author2-link = Bob Hearn | title=Playing Games with Algorithms: Algorithmic Combinatorial Game Theory | volume = Games of No Chance 3 | year=2009 | url=http://erikdemaine.org/papers/AlgGameTheory_GONC3/}}</ref>
* [[Poset Game]]<ref name="Grier2012">{{cite book | last = Grier | first = Daniel | chapter = Deciding the Winner of an Arbitrary Finite Poset Game is PSPACE-Complete | arxiv = 1209.1750 | year = 2012| doi = 10.1007/978-3-642-39206-1_42 | title = Automata, Languages, and Programming | volume = 7965 | pages = 497–503 | series = Lecture Notes in Computer Science | date = 2013 | isbn = 978-3-642-39205-4 | s2cid = 13129445 }}</ref>
* [[Reversi]]<ref>{{cite journal | author = Shigeki Iwata and Takumi Kasai | title = The Othello game on an n*n board is PSPACE-complete | journal = Theoretical Computer Science | volume = 123 | issue = 2 | year = 1994 | pages = 329&ndash;340 | doi = 10.1016/0304-3975(94)90131-7| doi-access = free }}</ref>
* [[River Crossing]]<ref name=ncl/>
* [[Rush Hour (board game)|Rush Hour]]<ref name=ncl>{{cite arXiv|eprint=cs.CC/0205005|author1=Hearn|author1-link=Bob Hearn|author2=Demaine|title=PSPACE-Completeness of Sliding-Block Puzzles and Other Problems through the Nondeterministic Constraint Logic Model of Computation |year=2002}}</ref>
* Finding optimal play in [[Mahjong solitaire]]<ref name=randshang>[[Anne Condon|A. Condon]], J. Feigenbaum, C. Lund, and [[Peter Shor|P. Shor]], Random debaters and the hardness of approximating stochastic functions, [[SIAM Journal on Computing]] 26:2 (1997) 369-400.</ref>
* [[Scrabble]]<ref>{{ cite journal | first1=Michael | last1=Lampis | first2 = Valia | last2 = Mitsou | first3 = Karolina | last3 = Sołtys | title = Scrabble is PSPACE-complete | journal = Journal of Information Processing | date = 2015 | url = https://www.jstage.jst.go.jp/article/ipsjjip/23/3/23_284/_article }}</ref>
* [[Sokoban]]<ref name=ncl/>
* [[Super Mario Bros.]]<ref name=smb>{{cite journal|author1last1=Demaine |author2first1=Erik D. |last2=Viglietta |author3first2=Giovanni |last3=Williams |first3=Aaron |title=Super Mario Bros. Is Harder/Easier than We Thought |journal=8th yearInternational Conference of Fun with Algorithms |date=June 2016 |url=https://dspace.mit.edu/bitstream/handle/1721.1/103079/Supermario%20Demaine.pdf?sequence=1&isAllowed=y}}<br/>Lay summary: {{cite web |last=Sabry |first=Neamat |date=Apr 28, 2020 |title=Super Mario Bros is Harder/Easier Than We Thought |website=Medium |url=https://medium.com/smith-hcv/super-mario-bros-is-harder-easier-than-we-thought-2d2c31f79bbb}}</ref>
* Black [[Pebble game]]<ref>Gilbert, Lengauer, and R. E. Tarjan: The Pebbling Problem is Complete in Polynomial Space. SIAM Journal on Computing, Volume 9, Issue 3, 1980, pages 513-524.</ref>
* Black-White [[Pebble game]]<ref>Philipp Hertel and [[Toniann Pitassi]]: [http://www.cs.toronto.edu/~philipp/pages/papers/BWPebbling.pdf Black-White Pebbling is PSPACE-Complete] {{webarchive|url=https://web.archive.org/web/20110608053819/http://www.cs.toronto.edu/~philipp/pages/papers/BWPebbling.pdf |date=2011-06-08 }}</ref>
Line 32 ⟶ 35:
* One-player [[pebble game]]<ref name=pebble/>
* Token on [[acyclic directed graph]] games:<ref name="AlgorithmicGameTheory"/>
* Annihilation
* Hit
* Capture
* Edge Blocking
* Target
* Pursuit
{{div col end}}
 
Line 53 ⟶ 50:
* [[First-order theory]] of [[binary string]]s under [[lexicographic order]]ing<ref name="WagnerW"/>
* [[First-order theory]] of a finite [[Boolean algebra (structure)|Boolean algebra]]<ref name="WagnerW"/>
* Stochastic satisfiability<ref name=papadimitriou85games>{{cite journal|author=Christos Papadimitriou |title=Games against Nature |doi=10.1016/0022-0000(85)90045-5 | journal=Journal of Computer and System Sciences|volume=31 |year=1985 |volume=31|issue=2|pages=288–301|author-link=Christos Papadimitriou |doi-access=free}}</ref>
* [[Linear temporal logic]] satisfiability and model checking<ref name="SistlaAndClarke">{{cite journal|author=A.P.Sistla and [[Edmund M. Clarke]]|title=The complexity of propositional linear temporal logics|journal=Journal of the ACM|volume=32|issue=3|year=1985|doi=10.1145/3828.3837|pages=733–749|s2cid=47217193 |doi-access=free}}</ref>
{{div col end}}
 
Line 63 ⟶ 60:
 
=== Circuit theory ===
[[Integer circuit]] evaluation<ref name=integercircuit>[httphttps://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/6911/18589/00856751.pdf Integer circuit evaluation]</ref>
 
=== Automata theory ===
{{div col |colwidth=36em}}
* Word problem for [[linear bounded automata]]<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL3</ref>}}
* Word problem for [[quasi-realtime automata]]<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL4</ref>}}
* [[Emptiness problem]] for a nondeterministic [[two-way finite state automaton]]{{sfnp|Garey|Johnson|1979|loc=AL2}}<ref name = GalilHierarch>Galil, Z. ''Hierarchies of Complete Problems''. In Acta Informatica 6 (1976), 77-88.</ref><ref>Garey–Johnson: AL2</ref>
* Equivalence problem for [[Nondeterministic finite automaton|nondeterministic finite automata]]{{sfnp|Garey|Johnson|1979|loc=AL1}}<ref>[[Larry Stockmeyer|L. J. Stockmeyer]] and A. R. Meyer. Word problems requiring exponential time. In Proceedings of the 5th Symposium on Theory of Computing, pages 1–9, 1973.</ref><ref>Garey–Johnson: AL1</ref>
* Word problem and emptiness problem for non-erasing [[stack automaton|stack automata]]<ref>J. E. Hopcroft and J. D. Ullman. [[Introduction to Automata Theory, Languages, and Computation]], first edition, 1979.</ref>
* [[Intersection_NonIntersection non-Emptiness_Problememptiness problem|Emptiness of intersection of an unbounded number of deterministic finite automata]]<ref name="D. Kozen 1977">D. Kozen. Lower bounds for natural proof systems. In Proc. 18th Symp. on the Foundations of Computer Science, pages 254–266, 1977.</ref>
<!-- the original reference to Kozen should suffice, no?...
<ref>M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.</ref> <ref>K.-J. Lange and P. Rossmanith. The emptiness problem for intersections of regular languages. In I. Havel, editor, Proc. of the 17th Conf. on Mathematical Foundations of Computer Science, number 629 in LNCS, pages 346–354. Springer-Verlag, 1992.</ref>
-->
* A generalized version of [[Langton's Ant]]<ref>[http://sciencelinks.jp/j-east/article/200212/000020021202A0428168.php Langton's Ant problem] {{webarchive|url=https://web.archive.org/web/20070927225749/http://sciencelinks.jp/j-east/article/200212/000020021202A0428168.php |date=2007-09-27 }}, "Generalized symmetrical Langton's ant problem is PSPACE-complete" by YAMAGUCHI EIJI and TSUKIJI TATSUIE in [[IEIC Technical Report]] ([[Institute of Electronics, Information and Communication Engineers]])</ref>
Line 84 ⟶ 81:
* Word problem for [[context-sensitive language]]<ref>S.-Y. Kuroda, "Classes of languages and linear-bounded automata", ''Information and Control'', '''7'''(2): 207&ndash;223, June 1964.</ref>
* Intersection emptiness for an unbounded number of [[regular language]]s <ref name="D. Kozen 1977"/>
* Regular Expression StartStar-Freeness <ref>{{cite web |last1=Bernátsky |first1=László |title=Regular Expression star-freeness is PSPACE-Complete |url=http://publicatio.bibl.u-szeged.hu/9528/1/Bernatsky_1997_ActaCybernetica.pdf |access-date=13 January 2021}}</ref>
* [[Equivalence problem]] for [[regular expression]]s<ref name = WagnerW/>
* [[Emptiness problem]] for [[regular expression]]s with intersection.<ref name = WagnerW/>
* [[Equivalence problem]] for star-free [[regular expression]]s with squaring.<ref name = WagnerW/>
* Covering for [[linear grammar]]s<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL12</ref>}}
* Structural equivalence for [[linear grammar]]s<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL13</ref>}}
* [[Equivalence problem]] for [[Regular grammar]]s<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL14</ref>}}
* [[Emptiness problem]] for [[ET0L]] grammars<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL16</ref>}}
* Word problem for [[ET0L]] grammars<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL19</ref>}}
* [[Tree transducer language]] membership problem for top down finite-state tree transducers<ref>Garey–Johnson: {{sfnp|Garey|Johnson|1979|loc=AL21</ref>}}
{{div col end}}
 
== Graph theory ==
{{div col |colwidth=54em36em}}
* succinct versions of many graph problems, with graphs represented as Boolean circuits,<ref>Antonio Lozano and Jose L. Balcazar. The complexity of graph problems for succinctly represented graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG’89WG'89, number 411 in Lecture Notes in Computer Science, pages 277–286. Springer-Verlag, 1990.</ref> ordered [[binary decision diagram]]s<ref>J. Feigenbaum and S. Kannan and M. Y. Vardi and M. Viswanathan, Complexity of Problems on Graphs Represented as OBDDs, Chicago Journal of Theoretical Computer Science, vol 5, no 5, 1999.</ref> or other related representations:
** s-t reachability problem for succinct graphs. This is essentially the same as the simplest plan existence problem in [[automated planning and scheduling]].
** planarity of succinct graphs
Line 104 ⟶ 101:
** connectedness of succinct graphs
** existence of Eulerian paths in a succinct graph
* Bounded two-player Constraint Logic<ref name="AlgorithmicGameTheory"/>
* [[Canadian traveller problem]].<ref>{{cite conference | author=C.H. Papadimitriou |author2=M. Yannakakis | title=Shortest paths without a map | conference=Proc. 16th ICALP | book-title=Lecture Notes in Computer Science | volume=372 | publisher=[[Springer-Verlag]] | year=1989 | pages=610–620 }}</ref>
* Determining whether routes selected by the [[Border Gateway Protocol]] will eventually converge to a stable state for a given set of path preferences<ref>Alex Fabrikant and [[Christos Papadimitriou]]. [http://www.cs.berkeley.edu/~alexf/papers/fp08.pdf The complexity of game dynamics: BGP oscillations, sink equlibria, and beyond] {{webarchive|url=https://web.archive.org/web/20080905124129/http://www.cs.berkeley.edu/~alexf/papers/fp08.pdf |date=2008-09-05 }}. In SODA 2008.</ref>
* Dynamic graph reliability.<ref name=papadimitriou85games/>
* Deterministic [[constraint logic]] (unbounded)<ref>{{cite book
| authorauthor1 = Erik D. Demaine and Robert A. Hearn
| author2 = Robert A. Hearn | author2-link = Bob Hearn
| title = Constraint Logic: A Uniform Framework for Modeling Computation as Games
| volume = Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (Complexity 2008)
Line 116 ⟶ 114:
| pages = 149–162
}}</ref>
* Dynamic graph reliability.<ref name=papadimitriou85games/>
* [[Graph coloring game]]<ref>{{cite journal|last1=Costa|first1=Eurinardo|last2=Pessoa|first2=Victor Lage |last3=Soares|first3=Ronan|last4=Sampaio|first4=Rudini|date=2020|title=PSPACE-completeness of two graph coloring games |journal=Theoretical Computer Science|volume=824-825|pages=36–45 |doi=10.1016/j.tcs.2020.03.022 |s2cid=218777459|doi-access=free}}</ref>
* [[Kayles|Node Kayles game and clique-forming game]]:<ref>{{cite journal|last1=Schaefer|first1=Thomas J. |date=1978|title=On the complexity of some two-person perfect-information games|journal=Journal of Computer and System Sciences|volume=16|issue=2 |pages=185–225|doi=10.1016/0022-0000(78)90045-4|doi-access=free}}</ref> two players alternately select vertices and the induced subgraph must be an independent set (resp. clique). The last to play wins.
* Nondeterministic Constraint Logic (unbounded)<ref name="AlgorithmicGameTheory"/>
* Bounded two-player Constraint Logic<ref name="AlgorithmicGameTheory"/>
{{div col end}}
 
== Others ==
{{div col |colwidth=36em}}
* Finite horizon POMDPs (Partially Observable Markov Decision Processes).<ref>{{cite journal | author=C.H. Papadimitriou |author2=J.N. Tsitsiklis | title=The complexity of Markov Decision Processes | journal= Mathematics of Operations Research| volume=12 | number=3 | year=1987| pages=441–450 | doi=10.1287/moor.12.3.441| url=http://dspace.mit.edu/bitstream/1721.1/2893/1/P-1479-13685602.pdf|hdl=1721.1/2893 | hdl-access=free }}</ref>
* Hidden Model MDPs (hmMDPs).<ref>{{cite conference | author=I. Chades |author2=J. Carwardine |author3=T.G. Martin |author4=S. Nicol |author5=R. Sabbadin |author6=O. Buffet | title=MOMDPs: A Solution for Modelling Adaptive Management Problems | conference=AAAI'12 | year=2012}}</ref>
* Dynamic Markov process.<ref name=papadimitriou85games/>
* Detection of inclusion dependencies in a relational database<ref>{{cite journal | author = Casanova, Marco A. |display-authors=et al | year = 1984 | title = Inclusion Dependencies and Their Interaction with Functional Dependencies | journal = Journal of Computer and System Sciences | volume = 28 | pages = 29–59 | doi=10.1016/0022-0000(84)90075-8| doi-access=free}}</ref>
* Computation of any [[Nash equilibrium]] of a 2-player [[normal-form game]], that may be obtained via the [[Lemke–Howson algorithm]].<ref>{{cite conference | author= P.W. Goldberg and [[Christos Papadimitriou|C.H. Papadimitriou]] and R. Savani | title=The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke–Howson Solutions | conference=Proc. 52nd FOCS | publisher=[[IEEE]] | year=2011 | pages=67–76 }}</ref>
* The Corridor Tiling Problem: given a set of [[Wang tile]]s, a chosen tile <math>T_0</math> and a width <math>n</math> given in unary notation, is there any height <math>m</math> such that an <math>n\times m</math> rectangle can be tiled such that all the border tiles are <math>T_0</math>?<ref>{{cite encyclopedia |author= Maarten Marx | title=Complexity of Modal Logic | encyclopedia=Handbook of Modal Logic |editor1=Patrick Blackburn |editor2= Johan F.A.K. van Benthem|editor3 = Frank Wolter| publisher=Elsevier |year=2007 |page=170}}</ref><ref>{{cite conference| title= Complexity of solvable cases of the decision problem for the predicate calculus| author=Lewis, Harry R.| conference=19th Annual Symposium on Foundations of Computer Science| pages= 35–47| year= 1978| publisher=IEEE}}</ref>
Line 139:
== References ==
*{{cite book
| lastlast1 = Garey
| firstfirst1 = M.R.
| author-link = Michael Garey
|author2 last2=Johnson, |first2=D.S. |author-link2=David S. Johnson
| title = Computers and Intractability: A Guide to the Theory of NP-Completeness
| year = 1979
Line 153:
* [https://arxiv.org/abs/math/9409225 The Complexity of Approximating PSPACE-complete problems for hierarchical specifications]
 
[[Category{{DEFAULTSORT:Mathematics-related lists|PSPACE-complete problems]]}}
[[Category:PSPACEMathematics-completerelated problemslists]]
[[Category:PSPACE-complete problems| ]]
[[Category:Lists of problems]]