Content deleted Content added
Cuzkatzimhut (talk | contribs) |
|||
(20 intermediate revisions by 17 users not shown) | |||
Line 1:
[[Image:Urbain Le Verrier.jpg|220px|thumb|right|[[Urbain Le Verrier]] (1811–1877)<br> The discoverer of [[Neptune]].]]
In mathematics ([[linear algebra]]), the '''Faddeev–LeVerrier algorithm''' is a [[Recurrence relation|recursive]] method to calculate the coefficients of the [[characteristic polynomial]] <math>
The algorithm has been independently rediscovered several times
{{cite book|first=Alston S.|last=Householder|title=The Theory of Matrices in Numerical Analysis |publisher=Dover Books on Mathematics|year=2006|author-link=Alston Scott Householder | isbn=0486449726}}</ref>
==The Algorithm==
The objective is to calculate the coefficients {{math|''c<sub>k</sub>''}} of the characteristic polynomial of the {{math|''n''×''n''}} matrix {{mvar|A}},
::<math>
where, evidently,
The coefficients
:<math> \begin{align}
M_0 &\equiv 0 & c_n &= 1 \qquad &(k=0) \\
Line 26 ⟶ 25:
:<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I,</math>
::<math>c_{n-3}=- \tfrac{1}{6}\Bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\Bigr)=-\frac{1}{3}(c_n \mathrm{tr} A^3+c_{n-1} \mathrm{tr} A^2 +c_{n-2}\mathrm{tr} A); </math>
etc.,<ref>Zadeh, Lotfi A. and Desoer, Charles A. (1963, 2008). ''Linear System Theory: The State Space Approach'' (Mc Graw-Hill; Dover Civil and Mechanical Engineering) {{ISBN|9780486466637}}
</ref><ref>Abdeljaoued, Jounaidi and Lombardi, Henri (2004). ''Méthodes matricielles - Introduction à la complexité algébrique'',
(Mathématiques et Applications, 42) Springer, {{ISBN|3540202471}} .</ref>
Line 38 ⟶ 37:
The proof relies on the modes of the [[adjugate matrix]], {{math|''B<sub>k</sub> ≡ M<sub>n−k</sub>''}}, the auxiliary matrices encountered.
This matrix is defined by
::<math>(\lambda I-A) B = I ~
and is thus proportional to the [[Resolvent formalism|resolvent]]
:<math>B = (\lambda I-A)^{-1} I ~
It is evidently a matrix polynomial in {{math|''λ''}} of degree {{math|''n−1''}}. Thus,
Line 58 ⟶ 57:
This can be easiest achieved through the following auxiliary equation (Hou, 1998),
::<math>\lambda \frac{\partial
This is but the trace of the defining equation for {{mvar|B}} by dint of [[Jacobi's formula]],
:<math>\frac{\partial
Inserting the polynomial mode forms in this auxiliary equation yields
Line 74 ⟶ 73:
:<math> M_{m} =A M_{m-1} - \frac{1}{m-1} (\operatorname{tr}A M_{m-1}) I ~,</math>
and, in comportance with the [[Cayley–Hamilton theorem]],
:<math> \operatorname{adj}(A) =(-1)^{n-1} M_{n}=(-1)^{n-1} (A^{n-1}+c_{n-1}A^{n-2}+ ...+c_2 A+ c_1 I)=(-1)^{n-1} \sum_{k=1}^n c_k A^{k-1}~.</math>
The final solution might be more conveniently expressed in terms of complete exponential [[Bell polynomials]] as
Line 91 ⟶ 88:
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN|978-0-521-46946-3}}, p. 54; Also see, Curtright, T. L., Fairlie, D. B. and Alshal, H. (2012). "A Galileon Primer", arXiv:1212.6972
:<math>c_{n-m} = \frac{(-1)^m}{m!}
\begin{vmatrix} \operatorname{tr}A & m-1 &0&\cdots&0\\
\operatorname{tr}A^2 &\operatorname{tr}A& m-2 &\cdots&0\\
\vdots & \vdots & & & \vdots \\
\operatorname{tr}A^{m-1} &\operatorname{tr}A^{m-2}& \cdots & \cdots & 1 \\
Line 102 ⟶ 99:
== See also ==
* [[Characteristic polynomial]]
* [[
* [[Fredholm determinant]]
==References==
{{reflist}}
Barbaresco F. (2019) Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups. In: Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science, vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_10
{{DEFAULTSORT:Faddeev-LeVerrier algorithm}}
|