Content deleted Content added
add the article number in the cited ref |
→See also: Exchangeable random variables |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Function that is invariant under all permutations of its variables}}
{{About|functions
In [[mathematics]], a [[Function (mathematics)|function]] of
A related notion is [[alternating polynomial]]s, which change sign under an interchange of variables. Aside from polynomial functions, [[Symmetric tensor|tensors]] that act as functions of several vectors can be symmetric, and in fact the space of symmetric
== Symmetrization ==
{{main|Symmetrization}}
Given any function
== Examples==
<ul>
<math display=block>f(x_1,x_2,\ldots,x_n) = f(x_2,x_1,\ldots,x_n) = f(x_3,x_1,\ldots,x_n,x_{n-1}), \quad \text{ etc.}</math>
</li>
▲:By definition, a symmetric function with ''n'' variables has the property that
</li>
▲:In general, the function remains the same for every [[permutation]] of its variables. This means that, in this case,
▲::<math> (x-x_1)(x-x_2)(x-x_3) = (x-x_2)(x-x_1)(x-x_3) = (x-x_3)(x-x_1)(x-x_2)</math>
▲:and so on, for all permutations of <math>x_1, x_2, x_3.</math>
▲* Consider the function
</li>
</ul>
▲:If ''x'' and ''y'' are interchanged the function becomes
▲::<math>f(y,x) = y^2+x^2-r^2</math>
▲:which yields exactly the same results as the original ''f''(''x'',''y'').
▲* Consider now the function
▲::<math>f(x,y) = ax^2+by^2-r^2</math>
▲:If ''x'' and ''y'' are interchanged, the function becomes
▲::<math>f(y,x) = ay^2+bx^2-r^2.</math>
▲:This function is obviously not the same as the original if {{nowrap|1=''a'' ≠ ''b''}}, which makes it non-symmetric.
== Applications ==
=== U-statistics ===
{{main|U-statistic}}
In [[statistics]], an
==See also==
*[[Symmetrization]]▼
*
* {{annotated link|Elementary symmetric polynomial}}
* {{annotated link|Even and odd functions}}
*[[Vandermonde polynomial]]▼
* {{annotated link|Exchangeable random variables}}
*
*
==References==
{{reflist}}
{{reflist|group=note}}
* [[F. N. David]], [[M. G. Kendall]] & D. E. Barton (1966) ''Symmetric Function and Allied Tables'', [[Cambridge University Press]].
* Joseph P. S. Kung, [[Gian-Carlo Rota]], & [[Catherine Yan|Catherine H. Yan]] (2009) ''[[Combinatorics: The Rota Way]]'', §5.1 Symmetric functions, pp 222–5, Cambridge University Press, {{isbn|978-0-521-73794-4}}
{{Tensors}}
[[Category:Symmetric functions| ]]▼
[[Category:Combinatorics]]
▲[[Category:Symmetric functions| ]]
[[Category:Properties of binary operations]]
|