Content deleted Content added
mNo edit summary |
m →Dual cone: Minor style+formatting improvement |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|
[[File:Dual cone illustration.svg|right|thumb|A set ''C'' and its dual cone ''C{{sup|*}}''.]]
[[File:Polar cone illustration1.svg|right|thumb|A set ''C'' and its polar cone ''C<sup>o</sup>''. The dual cone and the polar cone are symmetric to each other with respect to the origin.]]
Line 15:
where <math>\langle y, x \rangle</math> is the [[dual system|duality pairing]] between ''X'' and ''X{{sup|*}}'', i.e. <math>\langle y, x\rangle = y(x)</math>.
=== In a topological vector space ===
Line 33:
:<math>C^*_\text{internal} := \left \{y\in X: \langle y , x \rangle \geq 0 \quad \forall x\in C \right \}.</math>
=== Properties ===
Using this latter definition for ''C{{sup|*}}'', we have that when ''C'' is a cone, the following properties hold:<ref name="Boyd">{{cite book|title=Convex Optimization | first1=Stephen P. |last1=Boyd |first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83378-3 | url=https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf#page=65 |format=pdf|access-date=October 15, 2011|pages=51–53}}</ref>
* A non-zero vector ''y'' is in ''C{{sup|*}}'' if and only if both of the following conditions hold:
Line 63 ⟶ 64:
It can be seen that the polar cone is equal to the negative of the dual cone, i.e. ''C<sup>o</sup>'' = −''C{{sup|*}}''.
For a closed convex cone ''C'' in ''X'', the polar cone is equivalent to the [[polar set]] for ''C''.<ref>{{cite book|
== See also ==
Line 97 ⟶ 98:
| last = Ramm
| first = A.G.
|editor=Shivakumar, P.N. |editor2=Strauss,
| title = Operator theory and its applications
| publisher = Providence, R.I.: American Mathematical Society
Line 105 ⟶ 106:
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn | Schaefer|Wolff| 1999 | p=}} -->
{{Ordered topological vector spaces}}
[[Category:Convex analysis]]▼
[[Category:Convex geometry]]
[[Category:Linear programming]]
▲[[Category:Convex analysis]]
|