Content deleted Content added
rm COI / citespam Tag: Reverted |
Citation bot (talk | contribs) Add: pages, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Systems theory | #UCB_Category 112/182 |
||
(9 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Decision tracking and managing method}}
[[File:A sample Design Structure Matrix (DSM).png
The '''design structure matrix''' ('''DSM'''; also referred to as '''dependency structure matrix''', '''dependency structure method''', '''dependency source matrix''', '''problem solving matrix
It is the equivalent of an [[adjacency matrix]] in [[graph theory]], and is used in [[systems engineering]] and [[project management]] to model the structure of complex systems or processes, in order to perform system analysis, project planning and organization design.
== Overview ==
Line 31 ⟶ 32:
===DSM marking===
Initially, the off-diagonal cell markings indicated only the existence/non-existence of an interaction (link) between elements, using a symbol (or the figure '1'). Such marking is defined as '''Binary DSM'''. The marking then has developed to indicate quantitative relation '''Numeric DSM''' indicating the "strength" of the linkage, or statistical relations '''Probability DSM''' indicating for example the probability of applying new information (that require reactivation of the linked activity).
==DSM algorithms==
The DSM algorithms are used for reordering the matrix elements subject to some criteria. Static DSMs are usually analyzed with [[Cluster analysis|clustering algorithms]] (i.e., reordering the matrix elements in order to group together related elements). Clustering results would typically show groups (clusters) of tightly related elements, and elements that are either not connected or are connected to many other elements and therefore are not part of a group.<ref name="DSMbook"/>
Time-based DSMs are typically analyzed using partitioning, tearing and sequencing algorithms.<ref name="DSMbook
'''Sequencing''' methods try to order the matrix elements such that no feedback marks remain.<ref name="DSMbook
'''Tearing''' is the removal of feedback marks (in Binary DSM) or assignment of lower priority (numeric DSM). Tearing of a Component-based DSM may imply modularization (the component design is not influencing other components) or standardization (the component design is not influencing and not influenced by other components).<ref name="DSMbook
Minimizing feedback loops gets the best results for Binary DSM, but not always for Numeric DSM or Probability DSM. '''Sequencing''' algorithms (using [[optimization]], [[genetic algorithms]]) are typically trying to minimize the number of [[feedback loop]]s and also to reorder coupled activities (having cyclic loop) trying to have the feedback marks close to the diagonal. Yet, sometimes the algorithm just tries to minimize a criterion (where minimum iterations is not the optimal results).<ref name="DSMsim">T. Browning: [https://dx.doi.org/10.1109/TEM.2002.806709 "Modeling Impacts of Process Architecture on Cost and Schedule Risk in Product Development"], In: ''IEEE Transactions on Engineering Management.'' 49(4):428-442, 2002.</ref>
==Use and extensions==
Interactions between various aspects (people, activities, and components) is done using additional (non-square) linkage matrices. The Multiple Domain Matrix (MDM) is an extension of the basic DSM structure.<ref>Maurer M (2007) Structural Awareness in complex product design. Dissertation, Technischen Universität München, Germany</ref> A MDM includes several DSMs (ordered as block diagonal matrices) that represent the relations between elements of the same ___domain; and corresponding Domain Mapping Matrices (DMM) <ref>M. Danilovic; T. R. Browning: "[
The use of DSM has been extended to visualize and optimize the otherwise invisible information flow and interactions associated with office work. This visualization via DSM allows the Lean Body of Knowledge to be applied to office and information intensive flows.<ref>{{cite book|title=Far From the Factory: Lean for the Information Age|year=2010|publisher=Productivity Press|___location=New York|isbn=978-1420094565|pages=159–180}}</ref>
A customisation of MDM has been illustrated in <ref>{{cite journal |last1=Cardenas |first1=IC |last2=Kozine |first2=I |title=Customizing an Approach to Analyze an Underspecified Socio-Technical System |journal=Engineering Management Journal |date=2025 |volume= |issue= |pages=1–20 |doi=10.1080/10429247.2025.2502690|doi-access=free }}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref> for the analysis of underspecified systems.
==References==
Line 59 ⟶ 62:
*DSM book: http://mitpress.mit.edu/books/design-structure-matrix-methods-and-applications
*{{cite book
|
|
| last2 = Reich
| first2 = Yoram
|