Guitar tunings: Difference between revisions

Content deleted Content added
m Open C: wikisyntax nbsp
 
Line 1:
{{Short description|Adjusting pitches of guitar strings}}
{{Merge|Open tuning|date=January 2007}}
{{Use dmy dates|date=April 2021}}
{{more citations needed|date=April 2021}}
[[File:Range guitar.svg|thumb|right|The range of a guitar with standard tuning]]
[[File:Guitar Standard Tuning.ogg|thumb|right|Standard tuning (listen)]]
 
'''Guitar tunings''' are the assignment of [[pitch (music)|pitches]] to the [[open string (music)|open strings]] of [[guitar]]s, including [[classical guitar]]s, [[acoustic guitar]]s, and [[electric guitar]]s. [[Musical tuning|Tunings]] are described by the particular pitches that are made by notes in [[Western culture#Music|Western music]]. By convention, the notes are ordered and arranged from the lowest-pitched string (i.e., the deepest bass-sounding note) to the highest-pitched string (i.e., the highest sounding note), or the thickest string to thinnest, or the lowest frequency to the highest.<ref>{{harvtxt|Denyer|1992|pp=68–69}}</ref> This sometimes confuses beginner guitarists, since the highest-pitched string is referred to as the 1st string, and the lowest-pitched is the 6th string.
'''Guitar tuning''' refers to the [[pitch (music)|pitch]] adjustments carried out on the individual strings of a [[guitar]] in order to achieve a prescribed arrangement of [[note]]s from the open (unfretted) strings. Many such arrangements are used, of which the most popular are detailed below.
 
[[Standard tuning]] defines the string pitches as E (82.41 Hz), A (110 Hz), D (146.83 Hz), G (196 Hz), B (246.94 Hz), and E (329.63 Hz), from the lowest pitch (low E<sub>2</sub>) to the highest pitch (high E<sub>4</sub>). Standard tuning is used by most guitarists, and frequently used tunings can be understood as variations on standard tuning. To aid in memorising these notes, [[mnemonic]]s are used, for example, '''E'''ddie '''A'''te '''D'''ynamite '''G'''ood '''B'''ye '''E'''ddie.<ref>{{cite book |last1=Phillips |first1=Mark |last2=Chappell |first2=Jon |title=Guitar For Dummies, with DVD |date=2 October 2012 |publisher=John Wiley & Sons |isbn=978-1-118-11554-1 |page=17 |url=https://books.google.com/books?id=C0p_Vq-JvsgC |access-date=29 January 2024 |language=en}}</ref>
See [[how to tune a guitar]] if you've just started to play a guitar.
 
The term ''guitar tunings'' may refer to pitch sets other than standard tuning, also called ''nonstandard'', ''alternative'', or ''alternate''.<ref name="guitarworld.com">{{cite web|author=Brown, J. |date=2020|title=11 alternate tunings every guitarist should know|url=https://www.guitarworld.com/lessons/11-alternate-tunings-every-guitarist-should-know}}</ref> There are hundreds of these tunings, often with small variants of established tunings. Communities of guitarists who share a common musical tradition often use the same or similar tuning styles.
==Standard tuning==
 
== Standard and alternatives ==
As its name implies, standard tuning is by far the most popular tuning on a 6-string [[guitar]]. It comprises the following note arrangement.
{{Tall image|Standard diagonal shifting of C major chord.png|200|600|In standard tuning, the C-major chord has multiple shapes because of the irregular major-third between the '''G'''- and '''B'''-strings. Four such shapes are shown above.|right}}
{| class="wikitable"
 
=== Standard ===
[[Standard tuning]] is the tuning most frequently used on a six-string [[guitar]] and musicians assume this tuning by default if a specific alternate (or [[scordatura]]) is not mentioned. In [[scientific pitch notation]],<ref>{{cite web |url=http://www.theguitarlesson.com/online-guitar-tools/online-guitar-tuner/ |title=Online guitar tuner |website=TheGuitarLesson.com |url-status=live |archive-url=https://web.archive.org/web/20130824214357/http://www.theguitarlesson.com/online-guitar-tools/online-guitar-tuner/ |archive-date=24 August 2013 |access-date=27 August 2013}}</ref> the guitar's standard tuning consists of the following [[note (music)|notes]]: {{nowrap| '''E'''<sub>2</sub>–'''A'''<sub>2</sub>–'''D'''<sub>3</sub>–'''G'''<sub>3</sub>–'''B'''<sub>3</sub>–'''E'''<sub>4</sub> .}}
:{| class="wikitable"
|+ String frequencies<br />of standard tuning
! String !! [[Frequency]] !! [[Scientific pitch notation|Scientific<br />pitch<br />notation]]
|- style="text-align:center"
| 1 (E) || 329.63&nbsp;Hz || '''E'''<sub>4</sub>
|- style="text-align:center"
| 2 (B) || 246.94&nbsp;Hz || '''B'''<sub>3</sub>
|- style="text-align:center"
| 3 (G) || 196.00&nbsp;Hz || '''G'''<sub>3</sub>
|- style="text-align:center"
| 4 (D) || 146.83&nbsp;Hz || '''D'''<sub>3</sub>
|- style="text-align:center"
| 5 (A) || 110.00&nbsp;Hz || '''A'''<sub>2</sub>
|- style="text-align:center"
| 6 (E) || {{0}}82.41&nbsp;Hz || '''E'''<sub>2</sub>
|}
The guitar is a [[transposing instrument]]; that is, music for guitars is notated one octave higher than the true pitch. This is to reduce the need for [[ledger lines]] in music written for the instrument, and thus simplify the reading of notes when playing the guitar.<ref>{{cite web |url=https://www.musictheoryacademy.com/how-to-read-sheet-music/transposing-instruments/ |title=Transposing Instruments – Music Theory Academy |date=18 January 2013 |language=en-US |access-date=24 September 2019}}</ref>
 
Standard tuning provides reasonably simple fingering ([[fret]]-hand movement) for playing standard [[Scale (music)|scales]] and basic [[Guitar chord|chords]] in all major and minor keys. Separation of the second (B) through fifth (A) strings being tuned in minor 3rds and second (e) following the low (E) string as the separation being tuned in 5ths, and creating as by a five-[[semitone]] [[Interval (music)|interval]] (a [[perfect fourth]]) allows the guitarist to play a [[chromatic scale]] with each of the four fingers of the fretting hand controlling one of the first four frets (index finger on fret 1, little finger on fret 4, etc.) only when the hand is in the first position.
 
The open notes of the second (B) and third (G) strings are separated by four semitones (a [[major third]]). This tuning pattern of (low) fourths, one major third, and one fourth was inherited by the guitar from its predecessor instrument, the [[viol]]. The irregular major third breaks the fingering patterns of scales and chords, so that guitarists have to memorize multiple chord shapes for each chord. Scales and chords are simplified by [[major thirds tuning]] and [[all-fourths tuning]], which are [[regular tuning]]s maintaining the same musical interval between consecutive open string notes.<ref name="guitarworld.com" />
 
When barring each fret in standard tuning, all of the notes of the minor [[pentatonic scale]] based on the note of the first fret (along with its relative major pentatonic scale) are produced. For example, the open strings E, A, D, G, B, E yield the notes of the E minor pentatonic scale (G major pentatonic), and barring the third fret produces the notes of the G minor pentatonic scale (B♭ major pentatonic).
 
:{| class="wikitable"
|+ Chromatic note progression
! !! 0 !! I !! II !! III !! IV
|-
! String
! Noteopen
! 1st fret<br />(index)
! [[Frequency]]
! 2nd fret<br />(middle)
|-
! 3rd fret<br />(ring)
| 1 (thinnest)
! 4th fret<br />(little)
| '''e'''
|- style="text-align:center"
| 329.6 Hz
| 6th
! '''E'''{{sub|2}}
| '''F'''{{sub|2}}
| '''F'''{{su|p={{music|#}}|b=2}} / '''G'''{{su|p={{music|b}}|b=2}}
| '''G'''{{sub|2}}
| '''G'''{{su|p={{music|#}}|b=2}} / '''A'''{{su|p={{music|b}}|b=2}}
|- style="text-align:center"
| 5th
! '''A'''{{sub|2}}
| '''A'''{{su|p={{music|#}}|b=2}} / '''B'''{{su|p={{music|b}}|b=2}}
| '''B'''{{sub|2}}
| '''C'''{{sub|3}}
| '''C'''{{su|p={{music|#}}|b=3}} / '''D'''{{su|p={{music|b}}|b=3}}
|- style="text-align:center"
| 4th
! '''D'''{{sub|3}}
| '''D'''{{su|p={{music|#}}|b=3}} / '''E'''{{su|p={{music|b}}|b=3}}
| '''E'''{{sub|3}}
| '''F'''{{sub|3}}
| '''F'''{{su|p={{music|#}}|b=3}} / '''G'''{{su|p={{music|b}}|b=3}}
|- style="text-align:center"
| 3rd
! '''G'''{{sub|3}}
| '''G'''{{su|p={{music|#}}|b=3}} / '''A'''{{su|p={{music|b}}|b=3}}
| '''A'''{{sub|3}}
| '''A'''{{su|p={{music|#}}|b=3}} / '''B'''{{su|p={{music|b}}|b=3}}
| '''B'''{{sub|3}}
|- style="text-align:center"
| 2nd
! '''B'''{{sub|3}}
| '''C'''{{sub|4}}
| '''C'''{{su|p={{music|#}}|b=4}} / '''D'''{{su|p={{music|b}}|b=4}}
| '''D'''{{sub|4}}
| '''D'''{{su|p={{music|#}}|b=4}} / '''E'''{{su|p={{music|b}}|b=4}}
|- style="text-align:center"
| 1st
! '''E'''{{sub|4}}
| '''F'''{{sub|4}}
| '''F'''{{su|p={{music|#}}|b=4}} / '''G'''{{su|p={{music|b}}|b=4}}
| '''G'''{{sub|4}}
| '''G'''{{su|p={{music|#}}|b=4}} / '''A'''{{su|p={{music|b}}|b=4}}
|}
 
=== Alternative ===
{{anchor|Alternate}}
[[Scordatura|Alternative ("alternate") tuning]] refers to any open string note arrangement other than standard tuning. These offer different kinds of deep or ringing sounds, chord voicings, and fingerings on the guitar. Alternative tunings are common in [[folk music]]. Alternative tunings change the fingering of common chords when playing the guitar, and this can ease the playing of certain chords while simultaneously increase the difficulty of playing other chords.
 
Some tunings are used for particular songs and may be named after the song's title. There are hundreds of these tunings, although many are slight variations of other alternate tunings.<ref name="Off the Wall">{{harvtxt|Weissman|2006|loc='Off-the-wall tunings: A brief inventory' (Appendix&nbsp;A), pp.&nbsp;95–96}}</ref> Several alternative tunings are used regularly by communities of guitarists who share a common musical tradition, such as American folk or Celtic folk music.<ref>{{cite journal |last1=Caluda |first1=Glenn |title=Open Tunings for Folk Guitar |journal=The American Music Teacher |date=5 May 2014 |volume=63 |issue=5 |page=54 |url=http://www.mtna.org/MTNA/Stay_Informed/American_Music_Teacher/American_Music_Teacher.aspx |access-date=1 November 2020}}</ref>
 
The various alternative tunings have been grouped into the following categories:<ref name="Roche153">{{harvtxt|Roche|2004|loc='Categories of tunings', p.&nbsp;153}}</ref>
* dropped<ref name="Roche153156">{{harvtxt|Roche|2004|pp=153–156}}</ref><ref name="Denyer">{{harvtxt|Denyer|1992|pp=158–159}}</ref>
* open<ref name="Roche156">{{harvtxt|Roche|2004|loc='Open tunings', pp.&nbsp;156–159}}</ref>
* both major and minor (cross note)<ref name="Roche166">{{harvtxt|Roche|2004|loc='Cross-note tunings', p.&nbsp;166}}</ref><ref name="Denyer " /><ref name="Sethares">{{harvtxt|Sethares|2011}}</ref>
* modal<ref name="Denyer " /><ref name="Roche160">{{harvtxt|Roche|2004|loc='Modal tunings', pp.&nbsp;160–165}}</ref>
* instrumental (based on other [[stringed instrument]]s)
* miscellaneous ("special").<ref name="Denyer " /><ref name="Sethares" /><ref name="Roche166Radical">{{harvtxt|Roche|2004|loc='More radical tunings', p.&nbsp;166}}</ref>
 
[[Joni Mitchell]] developed a shorthand to specify guitar tunings: one letter naming the note of the open lowest string, followed by the relative fret (half-step) offsets between adjacent strings; in this format, the standard tuning is E55545.<ref>{{cite web |url=http://www.jonimitchell.com/music/notation.cfm |title=Notation |publisher=Joni Mitchell |access-date=20 March 2016 |url-status=live |archive-url=https://web.archive.org/web/20160315212129/http://jonimitchell.com/music/notation.cfm |archive-date=15 March 2016 }}</ref> This scheme highlights pitch relationships and simplifies comparisons among different tuning schemes.
 
==== String gauges ====
String gauge refers to the thickness and diameter of a guitar string, which influences the overall sound and pitch of the guitar depending on the guitar string used.<ref>{{Cite journal|last1=Faherty|first1=Michael|last2=Aaronson|first2=Neil L.|date=1 October 2010|title=Acoustical differences between treble guitar strings of different tension (i.e., gauge).|url=https://asa.scitation.org/doi/10.1121/1.3508761 |journal=The Journal of the Acoustical Society of America |volume=128 |issue=4 |pages=2449 |doi=10.1121/1.3508761 |bibcode=2010ASAJ..128.2449F |issn=0001-4966|url-access=subscription}}</ref> Some alternative tunings are difficult or even impossible to achieve with conventional guitars due to the sets of guitar strings, which have gauges optimized for standard tuning. With conventional sets of guitar strings, some higher tunings increase the string-tension until playing the guitar requires significantly more finger-strength and stamina, or even until a string snaps or the guitar is warped. However, with lower tunings, the sets of guitar strings may be loose and buzz. The tone of the guitar strings is also negatively affected by using unsuitable string gauges on the guitar.
 
Generally, alternative tunings benefit from re-stringing of the guitar with string gauges purposefully chosen to optimize particular tunings<ref name="Roche169">{{harvtxt|Roche|2004|loc='String gauges and altered tunings', p.&nbsp;169–170}}</ref> by using lighter strings for higher-pitched notes (to lower the tension of the strings) and heavier strings for lower-pitched notes (to prevent string buzz and vibration).
 
== Dropped tunings ==
A [[List of guitar tunings#Dropped|dropped tuning]] is one of the categories of alternative tunings and the process starts with standard tuning and typically lowers the pitch of ("drops") one or more strings, almost always the lowest-pitched (E) string on the guitar.
 
The drop D tuning is common in [[electric guitar]] and [[heavy metal music]].<ref>{{cite magazine |last=Bowcott |first=Nick |date=10 September 2008 |title=The doom generation: The art of playing heavy |magazine=[[Guitar World]] |issn=1045-6295 |lang=en |url=https://www.guitarworld.com/lessons/doom-generation-art-playing-heavy |access-date=28 March 2019 }}</ref> The low&nbsp;E string is tuned down one whole step (to D) and the rest of the strings remain in standard tuning. This creates an "open [[power chord]]" (three-note [[fifth (chord)|fifth]]) with the low three strings (DAD).
 
Although the drop&nbsp;D tuning was introduced and developed by [[blues]] and [[Classical music|classical]] guitarists, it is well known from its usage in contemporary [[Heavy metal music|heavy metal]] and [[hard rock]] bands. Early hard rock songs tuned in drop&nbsp;D include [[the Beatles]]' "[[Dear Prudence]]" (1968) and [[Led Zeppelin]]'s "[[Moby Dick (instrumental)|Moby Dick]]" (1969).<ref name=BenLong>{{cite web |first=Ben |last=Long |title = Drop‑D tuning |website=123guitartuner.com |url=http://www.123guitartuner.com/DropDTuning.php |archive-url=https://web.archive.org/web/20171110203418/http://www.123guitartuner.com/DropDTuning.php |archive-date=10 November 2017 }}</ref> Tuning the lowest string one [[Musical tone|tone]] down, from E to D, allowed these musicians to acquire a heavier and darker sound than in [[standard tuning]]. Without needing to tune all strings (standard&nbsp;D tuning), they could tune just one, in order to lower the key. Drop&nbsp;D is also a convenient tuning, because it expands the [[Scale (music)|scale]] of an instrument by two semitones: D and {{nobr|D{{sup|{{music|#}}.}}}}
 
In the mid-1980s, three [[alternative rock]] bands, {{nobr|[[King's X]],}} [[Soundgarden]], and [[Melvins]], influenced by [[Led Zeppelin]] and [[Black Sabbath]], made extensive use of drop&nbsp;D tuning. While playing [[Power Chord|power chords]] (a chord that includes the prime, fifth, and octave) in standard tuning requires a player to use two or three fingers, drop&nbsp;D tuning needs just one, similar in technique to playing [[barre chord]]s. This allowed them to use different methods of articulating power chords ([[legato]] for example) and more importantly, it allowed guitarists to change chords faster. This new technique of playing power chords introduced by these early [[grunge]] bands was a great influence on many artists, such as [[Rage Against the Machine]] and [[Tool (band)|Tool]]. The same drop&nbsp;D tuning then became common practice among [[alternative metal]] acts such as the band [[Helmet (band)|Helmet]], who used the tuning a great deal throughout their career and would later influence much alternative metal and [[nu metal]] bands.<ref>{{cite web |first=Brad |last=Tolinski |date=September 1994 |title=Heavy mental |type=interview |website=Blue Cricket (bluecricket.com) |url=http://www.bluecricket.com/helmet/interviews/gw994.html }}</ref>
 
There is also a [[double drop D tuning|'''''double''''' drop&nbsp;D tuning]], in which ''both'' E&nbsp;strings are tuned down a whole step (to D). The rest of the strings keep their original pitch.
 
== Open tunings ==
[[File:Ry Cooder playing.jpg|upright|thumb|alt=Ry Cooder plays the guitar.|Ry Cooder plays slide guitar with open tunings]]
An open tuning allows the guitarist to play a [[chord (music)|chord]] by strumming the open strings (no strings fretted).
 
Open tunings may be ''[[String instrument|chordal]]'' or ''[[Mode (music)|modal]]''. In chordal open tunings, the open chord consists of at least three different pitch classes. In a given [[Key (music)|key]], these are the root note, its 3rd and its 5th, and may include all the strings or a subset. The tuning is named for the base chord when played open, typically a major chord, and all similar chords in the chromatic scale are played by [[barre chord|barring]] all strings across a single fret.<ref name="Sethares16">{{harvtxt|Sethares|2009|p=16}}</ref> Open tunings are common in [[blues music|blues]] and [[folk music]].<ref name="Denyer158">{{harvtxt|Denyer|1992|p=158}}</ref> These tunings are frequently used in the playing of [[slide guitar|slide]] and [[lap slide guitar|lap-slide ("Hawaiian")]] guitars, and Hawaiian [[slack key]] music.<ref name="Sethares16" /><ref name="Denyer160">{{harvtxt|Denyer|1992|p=160}}</ref> A musician who is well known for using open tuning in his music is [[Ry&nbsp;Cooder]], who uses open tunings when playing the slide guitar.<ref name="Denyer158" />
 
Most modern music uses [[equal temperament]] because it facilitates the ability to play the guitar in any key—as compared to [[just intonation]], which favors certain keys, and makes the other keys sound less in tune.<ref>{{cite journal|title=Just desserts: Steve Kimock shares the sweet sounds of justly tuned thirds and sevenths|department=Master class|journal=Guitar Player|date=December 2005|last=Gold|first=Jude|url=https://www.questia.com/read/1G1-138998187}}{{dead link|date=July 2021}}</ref>
 
[[repetitive tuning|Repetitive]] open tunings are used for two classical non-Spanish guitars. For the [[English guitar]], the open chord is C major (C–E–G–C–E–G);<ref name=AM2007p30>{{harvtxt|Annala|Mätlik|2007|p=30}}</ref> for the [[Russian guitar]], which has [[seven string guitar|seven strings]], it is G major (D–G–B–D–G–B–D).<ref>{{cite book|series=The Russian Collection|volume=9|title=19th&nbsp;Century etudes for the Russian 7-string guitar in G&nbsp;Op<!-- "Op" is written, NOT "Open" -->|editor-first=Matanya|editor-last=Ophee|url=http://www.sheetmusicplus.com/title/The-Russian-Collection-Vol-9/18377478|publisher=Editions Orphee|id=PR.494028230|url-status=live|archive-url=https://web.archive.org/web/20130704152749/http://www.sheetmusicplus.com/title/The-Russian-Collection-Vol-9/18377478|archive-date=4 July 2013}}<br />– {{cite book|series=The Russian Collection|volume=10|title=Selected Concert Works for the Russian 7-String Guitar in G&nbsp;open tuning|editor-first=Matanya|editor-last=Ophee|publisher=Editions Orphee|id=PR.494028240|url=http://www.sheetmusicplus.com/title/Selected-Concert-Works/18478341|url-status=live|archive-url=https://web.archive.org/web/20130704152721/http://www.sheetmusicplus.com/title/Selected-Concert-Works/18478341|archive-date=4 July 2013}}</ref><ref name=Timofeyev>{{cite book|title=The golden age of the Russian guitar: Repertoire, performance practice, and social function of the Russian seven-string guitar music, 1800–1850|first=Oleg&nbsp;V.|last=Timofeyev|author-link=Oleg V. Timofeyev|publisher=Duke University, Department of Music|year=1999|pages=1–584|id=University Microfilms (UMI), Ann Arbor, Michigan, number&nbsp;9928880}}</ref>
 
When the open strings constitute a minor chord, the open tuning may sometimes be called a ''cross-note'' tuning.
 
=== Major key tunings ===
[[File:First eight harmonics vertical.png|thumb|C's first 8 harmonics (C, C, G, C, E, G, B{{music|flat}}, C) {{audio|First eight harmonics vertical.mid|Play simultaneously}}]]
[[File:Open D tuning.png|thumb|right|Open D tuning]]
[[File:Guitar Open-D Tuning.ogg|right|thumb|Open D tuning (listen)]]
[[File:Guitar Open-G Tuning.ogg|right|thumb|Open G tuning (listen)]]
Major open tunings give a [[major chord]] with the open strings.
 
:{| class="wikitable"
|+ [[Open tuning]]s
|-
! !! [[Major chord|Major triad]] !! [[Repetitive tuning|Repetitive]] !! [[Overtones tuning|Overtones]] !! Other<br/>
(often most popular)
|-
| [[Open A]] || (A,C{{sup|{{music|#}}}},E) || A–C{{music|sharp}}–E–A–C{{sup|{{music|#}}}}–E || A–A–E–A–C{{sup|{{music|#}}}}–E || [[List of guitar tunings#Open A | E–A–C{{sup|{{music|#}}}}–E–A–E]]
|-
| [[Open B tuning|open&nbsp;B]] || (B,D{{sup|{{music|#}}}}, F{{music|#}}) || B–D{{sup|{{music|#}}}}–F{{sup|{{music|#}}}}–B–D{{sup|{{music|#}}}}–F{{sup|{{music|#}}}} || B–B–F{{sup|{{music|#}}}}–B–D{{sup|{{music|#}}}}–F{{sup|{{music|sharp}}}} || [[List of guitar tunings#Open B|
B–F{{sup|{{music|#}}}}–B–F{{sup|{{music|#}}}}–B–D{{sup|{{music|#}}}}]]
|-
| [[Open C tuning|Open C]] || (C,E,G) || [[Open C tuning#C-E-G-C-E-G|C–E–G–C–E–G]] || [[open C tuning#Overtones C-C-G-C-E-G|C–C–G–C–E–G]] || [[Open C tuning#C-G-C-G-C-E|C–G–C–G–C–E]]
| 2
| '''b'''
| 246.9 Hz
|-
| [[Open D tuning|Open D]] || (D,F{{sup|{{music|#}}}},A) || D–F{{sup|{{music|#}}}}–A–D–F{{sup|{{music|#}}}}–A || D–D–A–D–F{{sup|{{music|#}}}}–A || [[Open D tuning|D–A–D–F{{sup|{{music|#}}}}–A–D]]
| 3
| '''g'''
| 196.0 Hz
|-
| [[Open E tuning|Open E]] || (E,G{{sup|{{music|#}}}},B) || E–G{{sup|{{music|#}}}}–B–E–G{{sup|{{music|#}}}}–B || E–E–B–E–G{{sup|{{music|#}}}}–B || [[List of guitar tunings#Open E|E–B–E–G{{sup|{{music|#}}}}–B–E]]
| 4
| '''d'''
| 146.8 Hz
|-
| [[Open F]] || (F,A,C) || F–A–C–F–A–C || F–F–C–F–A–C ||[[Open F|C–F–C–F–A–F]]
| 5
| '''A'''
| 110.0 Hz
|-
| [[Open G tuning|Open G]] ||(G,B,D)|| [[Open G tuning#Repetitive variants for special instruments|G–B–D–G–B–D]] || [[open G tuning#Overtones of the fundamental note G|G–G–D–G–B–D]] || [[open G tuning|D–G–D–G–B-D]]
| 6 (thickest)
| '''E'''
| 82.4 Hz
|}
[[Image:Guitarchords.jpg]]
 
Open tunings often tune the lowest open note to C, D, or E and they often tune the highest open note to D or E; tuning down the open string from E to D or C reduces the risk of breaking strings, which is associated with tuning strings up to a higher pitch.
[Note: The guitar is a [[transposing instrument]]. Its pitch sounds one octave lower than it is notated, the pitches referred to above are referenced standard pitch (a' = 440hz)].
 
==== Open D ====
[Note: In parts of Europe, including [[Germany]], the natural symbol has been transformed into the letter H: in German music notation, H is B♮ (B natural) and B is B♭ (B flat)].
The [[open D tuning]] (D–A–D–F{{music|sharp}}–A–D), also called "Vestapol" tuning,<ref>{{harvtxt|Grossman|1972|p=29}}</ref> is a common open tuning used by European and American / Western guitarists working with alternative tunings. [[The Allman Brothers Band]] instrumental "[[Little Martha]]" used an open&nbsp;D tuning raised one half step, giving an open E{{sup|{{music|b}}}} tuning with the same intervallic relationships as open&nbsp;D.<ref>{{harvtxt|Sethares|2009|pp=20–21}}</ref>
 
==== Open C ====
This pattern can also be denoted as E-A-d-g-b-e'. (See [[note]] for an explanation of the various symbols used in the above table and elsewhere in this article.)
The [[English guitar]] used a [[repetitive tuning|repetitive]] [[open C tuning]] (with distinct open notes C–E–G–C–E–G) that approximated a [[major-thirds tuning]].<ref name=AM2007p30/> This tuning is evident in [[William Ackerman]]'s song "Townsend Shuffle", as well as by [[John Fahey (musician)|John Fahey]] for [[The Great Santa Barbara Oil Slick#Track listing|his tribute]] to [[Mississippi John Hurt]].<ref name="Sethares 2009 18–19">{{harvtxt|Sethares|2009|pp=18–19}}</ref><ref>{{cite book |first=Steve |last=Baughman |year=2004 |chapter=Open&nbsp;C |title=Mel Bay Beginning Open Tunings |publisher=[[Mel Bay Publications]] |___location=[[Pacific, Missouri|Pacific, MO]] |pages=8–14 |isbn=978-0-7866-7093-2 |chapter-url=https://books.google.com/books?id=zCSPzwsNhcIC&pg=PA8 }}</ref>
 
The C–C–G–C–E–G tuning uses some of the [[harmonic series (music)|harmonic sequence]] (overtones) of the note&nbsp;C.<ref>{{cite web |title=CCGCEG – open&nbsp;C tuning via harmonic overtones |series=CCGCEG guitar tuner |website=Guitar Tunings Database (gtdb.org/tuner) |access-date=20 February 2013 |url=http://www.gtdb.org/tuner/ccgceg/ |year=2013 |url-status=dead |archive-url=https://web.archive.org/web/20130310120037/http://www.gtdb.org/tuner/ccgceg/ |archive-date=10 March 2013 }} </ref><ref>{{harvtxt|Persichetti|1961|pp=23–24}}</ref> This overtone-series tuning was modified by [[Mick Ralphs]], who used a high C note rather than the high G note for "[[Can't Get Enough (Bad Company song)|Can't Get Enough]]" on ''[[Bad Company (album)|Bad Company]]''. Ralphs said, "It needs the open&nbsp;C to have that ring," and "it never really sounds right in standard tuning".<ref name=Ralphs>{{cite magazine |first=Lisa |last=Sharken |date=15 May 2001 |title=Mick&nbsp;Ralphs: The rock&nbsp;'N'&nbsp;roll fantasy continues |access-date=21 February 2013 |magazine=[[Vintage Guitar]] |url=http://www.vintageguitar.com/2801/mick-ralphs/ |url-status=live |archive-url=https://web.archive.org/web/20130208022331/http://www.vintageguitar.com/2801/mick-ralphs/ |archive-date=8 February 2013}}</ref>
Standard tuning has evolved to provide a good compromise between simple fingering for many [[Guitar chord|chords]] and the ability to play common [[Scale (music)|scales]] with minimal left hand movement.
 
==== Open G ====
The separation of the first (e') and second (b) string, as well as the separation between the third (g), fourth (d), fifth (A), and sixth (E) strings by a 5-semitone interval (a [[perfect fourth]]) allows notes of the [[chromatic scale]] to be played with each of the four fingers of the left hand controlling one of the first four [[fret]]s (index finger on fret 1, little finger on fret 4, etc.). It also yields a symmetry and intelligibility to fingering patterns.
Mick Ralphs' open C tuning was originally an [[open G tuning]], which listed the initial six overtones of the G note, namely G–G–D–G–B–D; Ralphs used this open G tuning for "Hey Hey" and while writing the demo of "Can't Get Enough".<ref name="Ralphs" />
 
[[Open-G tuning]] usually refers to D–G–D–G–B–D.
The separation of the second (b), and third (g) string is by a 4-[[semitone]] interval (a [[major third]]). Though this breaks the fingering pattern of the chromatic scale and thus the symmetry, it eases the playing of some often-used [[chord (music)|chords]] and [[scale (music)|scales]], and it provides more diversity in fingering possibilities.
The open G tuning variant G–G–D–G–B–D was used by [[Joni Mitchell]] for "Electricity", "For the Roses", and "Hunter (The Good Samaritan)".<ref>{{cite web |first=Joni |last=Mitchell |author-link=Joni Mitchell | title=List of all guitar and piano transcriptions |website=JoniMitchell.com |access-date=22 February 2013 | url=http://jonimitchell.com/music/viewalltranscriptions.cfm?sortby=by%20Tuning |url-status=live |archive-url=https://web.archive.org/web/20150518091409/http://jonimitchell.com/music/viewalltranscriptions.cfm?sortby=by%20Tuning |archive-date=18 May 2015 }}</ref> Truncating this tuning to G–D–G–B–D, for his five-string guitar, [[Keith Richards]] uses this overtones-tuning on [[the Rolling Stones]]'s "[[Honky Tonk Women]]", "[[Brown Sugar (Rolling Stones song)|Brown Sugar]]" and "[[Start Me Up]]".<ref name=Ellis-2005-nd>{{cite magazine |last=Ellis |first=Andy |year=2005 |title=How to play like ... Keith Richards |magazine=[[Guitar Player]] |access-date=24 March 2013 |url=https://www.questia.com/read/1G1-129091443 }} {{dead link|date=July 2021}} </ref>
 
The seven-string [[Russian guitar]] uses the open G tuning D–G–B–D–G–B–D, which contains mostly major and minor thirds.<ref>{{harvtxt|Bellow|1970 |p=[https://books.google.com/books?id=T7k5AQAAIAAJ&q=D+G+B 164] }}</ref><ref name=Timofeyev/>
==Alternate tunings==
Alternate tuning refers to any open string note arrangement other than that of standard tuning detailed above. Despite the usefulness and almost universal acceptance of standard tuning, many guitarists employ such alternate tuning arrangements in order to exploit the unique chord voicing and sonorities that result from them. Most alternate tunings necessarily change the chord shapes associated with standard tuning, which results in certain chords becoming much easier to play while others may become impossible to play.
 
==== Creating any kind of open tuning ====
===Rock music tunings===
 
Any kind of chordal tuning can be achieved, simply by using the notes in the chord and tuning the strings to those notes. For example, [[Sus chord|A{{sup|sus4}}]] has the notes A, D, E; by tuning the strings to only those notes, it creates a chordal A{{sup|sus4}} tuning.
Guitar tunings in [[rock music]] and [[Heavy metal music|metal]] mainly aim at making [[power chords]] much simpler to play.
* '''[[Dropped D]]:''' D-A-d-g-b-e'
 
:{| class="wikitable"
This tuning is not only used by metal and rock bands, but also [[folk music|folk musicians]]. It allows [[power chord]]s (also known as fifth chords) to be played with a single finger on the lowest three strings. It is also used extensively in [[classical guitar]] music and transcriptions since it allows the lower open strings to sound the [[root (music)|root]] and [[fifth]] of the D [[major scale]] as part of the [[bassline]]. Some guitarists choose to use a [[capo]] on the 2nd fret with this tuning so that they can retain the ease of playing [[power chords]] without the darker sound created by the D tuning. Examples of this include the bands [[Angels and Airwaves]], [[Billy Talent]], and [[Three Days Grace]]. In Classical guitar, the tuning is used by famous musicians, such as Fransisco Tarrega.
|+Power chord (fifths) open tunings:<ref>
{{cite web
|title=Piano chord chart
|website=8notes.com
|url=https://www.8notes.com/resources/notefinders/piano_chords.asp
|access-date=6 May 2018 |url-status=live
|archive-url=https://web.archive.org/web/20170614025333/https://www.8notes.com/resources/notefinders/piano_chords.asp
|archive-date=14 June 2017
}}
</ref>
|-
| A{{sup|5}} || E–A–E–A–A–E
|-
| B{{sup|5}} || F{{sup|{{music|#}}}}–B–F{{sup|{{music|#}}}}–B–B–F{{sup|{{music|#}}}}
|-
| C{{sup|5}} || C–G–C–G–G–G
|-
| D{{sup|5}} || D–A–D–A–D–D
|-
| E{{sup|5}} || E–B–E–E–B–E
|-
| F{{sup|5}} || F–C–C–C–C–F
|-
| G{{sup|5}} || D–G–D–G–D–G
|}
[[Bass guitar|Bass players]] may omit the last two strings.
 
=== Minor or "cross-note" tunings ===
* '''Dropped C#:''' C#-G#-C#-F#-A#-D#'
{{anchor|Minor}}{{anchor|Cross-note}}
Cross-note tunings include a minor third, so giving a [[minor chord]] with open strings. Fretting the minor-third string at the first fret produces a major-third, so allowing a one-finger fretting of a major chord.<ref>{{harvtxt|Sethares|2001|p=16}}</ref> By contrast, it is more difficult to fret a minor chord using an open major-chord tuning.
 
[[Bukka White]] and [[Skip James]]<ref>{{cite journal|last=Cohen|first=Andy|date=22 March 2005|title=Stefan Grossman- Country Blues Guitar in Open Tunings|journal=[[Sing Out!]]|volume=49|issue=1|page=152}}</ref> are well known for using cross-note E-minor (E B E G B E) in their music, as in 'Hard Time Killin Floor Blues'.
This tuning is the same as dropped D, but tuned one semitone lower. Used often by the bands [[Alice in Chains]] and [[Linkin Park]].
 
=== Other open chordal tunings ===
* '''[[Dropped C]]:''' C-G-C-F-A-D'
Some guitarists choose open tunings that use more complex chords, which gives them more available intervals on the open strings. C<sup>6</sup>, E<sup>6</sup>, E<sup>7</sup>, E<sup>6/9</sup> and other such tunings are common among lap-steel players such as Hawaiian slack-key guitarists and country guitarists, and are also sometimes applied to the regular guitar by bottleneck (a slide repurposed from a glass bottle) players striving to emulate these styles. A common C<sup>6</sup> tuning, for example, is C–E–G–A–C–E, which provides open major and minor thirds, open major and minor sixths, fifths, and octaves. By contrast, most open major or open minor tunings provide only octaves, fifths, and either a major third/sixth or a minor third/sixth—but not both. [[Don Helms]] of Hank Williams band favored C<sup>6</sup> tuning; [[Slack-key guitar|slack-key]] artist [[Henry Kaleialoha Allen]] uses a modified C<sup>6/7</sup> (C<sup>6</sup> tuning with a B{{music|b}} on the bottom); Harmon Davis favored E<sup>7</sup> tuning; [[David Gilmour]] has used an open G<sup>6</sup> tuning.
 
=== Modal tunings ===
This tuning is the same as dropped D, but each string is lowered an additional whole step, or 2 semitones. Technically a "drop C" tuning would be C-A-D-G-B-e. However, the tuning technically known as "Dropped D tuned down 1 whole step" is commonly referred to as "Dropped C" tuning, as very few people drop only the sixth string (although [[Zakk Wylde]] has been known to occasionally drop only the sixth string in tuning, along with [[Matt Bellamy]] of Muse in their song 'Map Of The Problematique'). This gives the guitar a very low and heavy sound, and usually requires extra-thick strings to maintain tension. This tuning is frequently used by [[Rock music|rock]] bands, such as [[Godsmack]], [[Thrice]], [[Mudvayne]], [[Bullet For My Valentine]] and [[System of a Down]], as well as various [[metalcore]] bands, such as [[Atreyu (band)|Atreyu]], [[Killswitch Engage]], [[As I Lay Dying]], and [[It Dies Today]], to achieve a lower sound. Tuning a standard, non-[[baritone guitar]] any lower than this is difficult. This tuning is also used by Ryan Overton.
Modal tunings are open tunings in which the open strings of the guitar do not produce a [[tertian]] (i.e., major or minor, or variants thereof) chord. The strings may be tuned to exclusively present a single interval (all fourths; all fifths; etc.) or they may be tuned to a non-tertian chord (unresolved suspensions such as E–A–B–E–A–E, for example). Modal open tunings may use only one or two pitch classes across all strings (as, for example, some [[Heavy metal music|metal]] guitarists who tune each string to either E or B, forming "power chords" of ambiguous major/minor tonality).
 
Popular modal tunings include D Modal (D-G-D-G-B-E) and C Modal (C-G-D-G-B-D).
* '''[[C Tuning]]:''' C-F-Bb-Eb-G-C'
 
=== Lowered (standard) ===
The C standard tunes the strings of the guitar to produce a low tone. This tuning is commonly used by metal and hard rock artists as it is 2 whole steps below standard tuning. This tuning can be written as either C-F-A#-D#-G-C or more often C-F-Bb-Eb-G-C. This allows for a low, heavy sound, while still maintaining the intervals present in standard tuning. C tuning is often associated with [[Stoner rock]]. [[Josh Homme]], guitarist for [[Kyuss]] and [[Queens of the Stone Age]], is famous for using this tuning.
Derived from standard EADGBE, all the strings are [[List of guitar tunings#Lowered (Standard)|tuned lower by the same interval]], thus providing the same chord positions transposed to a lower key. Lower tunings are popular among rock and heavy metal bands. The reason for tuning down below the standard pitch is usually either to accommodate a singer's vocal range or to get a deeper/heavier sound or pitch.<ref>{{Cite web |last=Starlin |first=Mark |date=2007-05-05 |title=Better Guitar - Article on Tuning Down A Half Step |url=http://www.betterguitar.com/instruction/rhythm_guitar/tune_down_half_step/tune_down_half_step.html |archive-url=https://web.archive.org/web/20070505020813/http://www.betterguitar.com/instruction/rhythm_guitar/tune_down_half_step/tune_down_half_step.html |archive-date=2007-05-05 |access-date=2023-09-09}}</ref> Common examples include:
 
==== E♭ tuning ====
* '''Dropped B:''' B-F#-B-E-G#-C#'
Rock guitarists (such as [[Jimi Hendrix]] on the songs "[[Voodoo Child (Slight Return)]]" and "[[Little Wing]]") occasionally tune all their strings down by one semitone to obtain ''E♭ tuning''. This makes the strings easier to bend when playing and with standard fingering results in a lower key. It also facilitates E shape fingerings when playing with horn instruments.<ref>{{cite book |last1=Serna |first1=Desi |title=Guitar Rhythm and Technique For Dummies |date=2015 |publisher=For Dummies |isbn=978-1-119-02287-9 |page=80 |url=https://www.dummies.com/art-center/music/guitar/string-gauge-and-bending-on-the-guitar/ |access-date=25 January 2019 |quote=it's fairly common in rock music for guitarists to tune all of their strings down by a half-step}}</ref> Grunge band [[Nirvana (band)|Nirvana]] also used this tuning extensively throughout their career, most significantly in their albums ''[[Bleach (Nirvana album)|Bleach]]'' and ''[[In Utero]]''. [[Guns N' Roses]] guitarist [[Slash (musician)|Slash]] also commonly uses E''♭'' tuning on songs such as '[[Sweet Child o' Mine]]' and '[[Welcome to the Jungle]]'.
 
Many older bands utilise E''♭''tuning during live shows to play songs originally recorded in standard tuning: this is usually to make it easier for the (often ageing) singer. An example is Led Zeppelin's [[Ahmet Ertegun Tribute Concert|2007 reunion concert]], where most of their set list was played in E''♭''.
This tuning is the same as dropped D & C, but lowered from dropped C an additional semitone, or half step. This tuning is very popular with [[nu-metal]] act [[Slipknot (band)|Slipknot]], [[metalcore]] act [[Bleeding Through]], and other alternative metal/post-grunge bands. Very heavy gauge strings (at least .11) are required for this tuning, which can also involve widening the the string grooves in the nut and bridge of the guitar as well as re-adjusting the tension in the neck.
 
==== D tuning ====
* '''B Tuning:'''
[[File:D tuning.png|thumb|right|D tuning]]
 
'''D Tuning''', also called '''One Step Lower''', '''Whole Step Down''', '''Full Step''' or '''D Standard''', is another alternative. Each string is lowered by a whole tone (two semitones) resulting in '''D-G-C-F-A-D'''. It is used mostly by [[Heavy metal music|heavy metal]] bands to achieve a heavier, deeper sound, and by [[blues]] guitarists, who use it to accommodate [[string bending]] and by 12-string guitar players to reduce the mechanical load on their instrument. Among musicians, [[Elliott Smith]] was known to use D tuning as his main tuning for his music. It was also used for several songs on [[the Velvet Underground]]'s album ''[[The Velvet Underground & Nico]]''. Metal band [[Megadeth]] has also been using this tuning since their album ''[[Dystopia (Megadeth album)|Dystopia]]'' to facilitate frontman [[Dave Mustaine]]'s age and voice after his battle with throat cancer.
Also known as "B Standard" tuning, this tuning is the standard tuning of seven string guitars, which are tuned B-E-A-D-B-G-E. On a six string guitar, the tuning is modified to B-E-A-D-F#-B. The six-string version of this tuning is used by Swedish melodic metal band [[Soilwork]] while the seven string version is a staple of [[Dream Theater]] guitarist [[John Petrucci]].
 
== Regular tunings ==
* '''Bb Tuning:''' Bb-F-Bb-Eb-G-C or Bb-Eb-Ab-Db-F-Bb
{{Infobox Regular tuning
| regular_tuning_name = Regular tunings
|image_top = Pitch class space.svg
|caption_top=For regular guitar-tunings, the distance between consecutive open strings is a constant musical-interval, measured by semitones on the chromatic circle. The chromatic circle lists the twelve notes of the octave.
|other_names = Uniform tunings
|interval=
|semitones =
|examples =
|advanced = TRUE
|repetition =
|other_instruments =
|advantages = Simplifies learning by beginners and improvisation by advanced guitarists
|disadvantages = Replicating the [[open chord]]s ("[[cowboy chord]]s") of standard tuning is difficult;<br /> intermediate guitarists must relearn the fretboard and chords.
|lefty =
}}
{{stack|[[File:Tuning ADGBE5 ADGBE0.svg|thumb|alt=A fretboard with line-segments connecting the successive open string notes of the standard tuning|In the standard guitar tuning, one major-third interval is interjected amid four perfect-fourth intervals. In each regular tuning, all string successions have the same interval.]]
{{Tall image|Diagonal shift of C-major chord in major-thirds tuning.png|200|450|alt=A C-major chord in four positions.|Chords can be shifted diagonally in major-thirds tuning and other regular tunings. In standard tuning, chords change their shape because of the irregular major-third G-B.|right}}}}
{{Main|Regular tunings}}
{{See also|Interval (music)}}
 
In standard tuning, there is an interval of a major third between the second and third strings, and all the other intervals are fourths. This means chords cannot be shifted around the fretboard in the standard tuning E–A–D–G–B–E, which requires four chord-shapes for the major chords. There are separate chord-forms for chords having their [[root note]] on the third, fourth, fifth, and sixth strings.<ref>{{harvtxt|Denyer|1992|p=119}}</ref> These are called [[Inversion (music)|inversions]].
One step lower than B tuning, this tuning is notable for it's dark or almost evil sounding qualities. The first version is the "dropped" version, and is utilized by artists [[Chevelle]] and [[Evanescence]] on their newest studio albums, while the latter version is utilized by long standing melodic death metallists [[In Flames]]
 
In contrast, [[regular tunings]] have equal intervals between the strings,<ref name="Sethares52">{{harvtxt|Sethares|2001|p=52}}</ref> and so they have symmetrical scales all along the fretboard. This makes it simpler to translate chords. For the regular tunings, chords may be moved diagonally around the fretboard. The diagonal movement of chords is especially simple for the regular tunings that are repetitive, in which case chords can be moved vertically: Chords can be moved three strings up (or down) in major-thirds tuning, and chords can be moved two strings up (or down) in [[Tritone|augmented]]-fourths tuning. Regular tunings thus appeal to new guitarists and also to jazz-guitarists, whose improvisation is simplified by regular intervals.
* '''Dropped A:''' A-E-A-D-F#-B'
 
On the other hand, five- and six-string [[open chord]]s ("[[cowboy chord]]s") are more difficult to play in a regular tuning than in standard tuning. Instructional literature uses standard tuning.<ref name="Kirkeby" /> Traditionally a course begins with the hand in [[classical guitar technique#Left-hand position|first position]],<ref>{{cite magazine|magazine=[[Berklee Today]]|title=Reading skills: The guitarist's nemesis?|first=Mark|last=White|date=Fall 2005|url=https://www.berklee.edu/berklee-today/fall-2005/reading-skills|volume=17|issue=2|publisher=[[Berklee College of Music]]|issn=1052-3839|___location=Boston, MA}}</ref> that is, with the left-hand covering frets 1–4.<ref name="Denyer72">{{harvtxt|Denyer|1992|p=72}}</ref> Beginning players first learn [[open chord]]s belonging to the [[major key]]s [[C major|C]],&nbsp;[[G major|G]], and&nbsp;[[D major|D]]. Guitarists who play mainly open chords in these three major-keys and their [[relative minor]]-keys ([[A minor|Am]],&nbsp;[[E minor|Em]],&nbsp;[[B minor|Bm]]) may prefer standard tuning over many regular tunings,<ref name="Peterson37">{{harvtxt|Peterson|2002|p=37}}</ref><ref name="Griewank5">{{harvtxt|Griewank|2010|p=5}}</ref> On the other hand, minor-thirds tuning features many [[barre chord]]s with repeated notes,<ref>{{harvtxt|Sethares|2001|pp=54–55}}</ref> properties that appeal to acoustic-guitarists and beginners.
A very low drop tuning used very rarely in metal and death metal bands, notably the Egyptian-themed [[Nile (band)|Nile]] as well as [[Slipknot (band)|Slipknot]] on several tracks from their [[Iowa (album)|Iowa]] album. Hardcore band [[Bury Your Dead]] also utilizes this tuning exclusively on their latest album "Beauty and the Breakdown". As with the Dropped B tuning, heavy gauge strings are required (more so, in fact), and even minor modifications to some guitars. It should also be noted that [[nu metal]] pioneers [[Korn]] were the first band to use such a guttural tuning, by using seven string guitars and dropping each string one whole step.
 
=== Major thirds and perfect fourths ===
* '''"Hardcore" Tuning:''' C-G-c-f-a-a#'
{{Main|Major thirds tuning|All fourths tuning}}
A rather uncommon tuning, "hardcore" tuning is used by bands of hardcore, grindcore, and even some metalcore. It much resembles dropped C tuning, except for the two bottom strings, which, depending on what is most useful for the guitarist, are tuned one semitone (a minor second) apart. This allows the guitarist to easily create the very harsh dissonance of the minor second. It is often used by [[Drop Dead, Gorgeous]], [[The Devil Wears Prada]], [[The Locust]], and [[Sinai Beach]] to name but a few.
Standard tuning mixes a major third (M3) with its perfect fourths. Regular tunings that are based on either major thirds or perfect fourths are used, for example, in jazz.
 
[[All fourths tuning]] E<sub>2</sub>–A<sub>2</sub>–D<sub>3</sub>–G<sub>3</sub>–C<sub>4</sub>–F<sub>4</sub> keeps the lowest four strings of standard tuning, changing the major third to a perfect fourth.<ref>{{harvtxt|Sethares|2001|pp=58–59}}</ref><ref>{{Cite book |first=Bob |last=Bianco |title=Guitar in Fourths |publisher=Calliope Music |___location=[[New York City]] |year=1987 |isbn=0-9605912-2-2 |oclc=16526869}}</ref> Jazz&nbsp;musician [[Stanley&nbsp;Jordan]] stated that all-fourths tuning "simplifies the fingerboard, making it logical".<ref>{{harvtxt|Ferguson|1986|p=76}}</ref>
* '''E-flat Tuning:''' Eb-Ab-db-gb-bb-eb'
 
Major-thirds tuning (M3 tuning) is a regular tuning in which the [[musical&nbsp;interval]]s between successive strings are each [[major third]]s, for example E<sub>2</sub>–G{{music|#}}<sub>2</sub>–C<sub>3</sub>–E<sub>3</sub>–G{{music|#}}<sub>3</sub>–C<sub>4</sub>.<ref name="Sethares56">{{harvtxt|Sethares|2001|pp=56}}</ref><ref name="Peterson">{{harvtxt|Peterson|2002|pp=36–37}}</ref><ref name="Griewank">{{harvtxt|Griewank|2010}}</ref><ref name="Patt">{{cite web|url=http://www.ralphpatt.com/Tune.html|first=Ralph|last=Patt|author-link=Ralph Patt|publisher=ralphpatt.com|work=Ralph&nbsp;Patt's jazz web page|title=The major&nbsp;3rd tuning|date=14 April 2008|access-date=10 June 2012|id=cited by {{harvtxt|Sethares|2011}}}}</ref> Unlike all-fourths and all-fifths tuning, M3 tuning [[repetitive tuning|repeats]] its octave after three strings, which simplifies the learning of chords and improvisation.<ref name="Kirkeby">{{cite web|first=Ole|last=Kirkeby|date=1 March 2012|title=Major&nbsp;thirds tuning|access-date=10 June 2012|url=http://v3p0.m3guitar.com/|publisher=m3guitar.com|id=cited by {{harvtxt|Sethares|2011}}|url-status=dead|archive-url=https://web.archive.org/web/20150411064851/http://v3p0.m3guitar.com/|archive-date=11 April 2015}}</ref> This repetition provides the guitarist with many possibilities for fingering chords.<ref name="Sethares56" /><ref name="Patt" /> With six strings, major-thirds tuning has a smaller range than standard tuning; with seven strings, the major-thirds tuning covers the range of standard tuning on six strings.<ref name="Peterson" /><ref name="Griewank" /><ref name="Patt" />
This tuning is achieved when all the strings are flattened by a half step. Bands that use or have used this include [[The Smashing Pumpkins]], [[Jimi Hendrix]], [[AFI]], [[Simple Plan]], [[Taking Back Sunday]], [[Guns N' Roses]], [[Led Zeppelin]], [[Coheed and Cambria]], [[Relient K]], [[Weezer]], [[Nirvana (band)|Nirvana]], [[Stevie Ray Vaughan]], [[Iced Earth]], [[Green Day]], [[Eskimo Joe]], [[Stone Sour]], [[KISS (band)|KISS]], [[Dashboard Confessional]], [[Van Halen]], and [[Alice In Chains]]and even Ygnwie. This can be combined with other tuning techniques such as dropped D tuning and makes no difference to fingering. Often the key will be considered by the players as if played in standard tuning. This tuning can be used for a number of reasons: to make larger strings bend more easily, to make the tone heavier, to better suit the vocalist's range, to play with saxophone family more easily, or to play in Eb pentatonic minor formed by the black keys of a keyboard. Heavier bands may tune down to D, C#, or even C. B is possible but sometimes [[seven string guitar]]s are used instead.
 
Major-thirds tunings require less hand-stretching than other tunings, because each M3 tuning packs the octave's twelve notes into four consecutive frets.<ref name="Peterson" /><ref name="Griewank9">{{harvtxt|Griewank|2010|p=9}}</ref> The major-third intervals let the guitarist play [[major&nbsp;chord]]s and [[minor&nbsp;chord]]s with two three consecutive fingers <!-- on three consecutive strings --> on two consecutive frets.<ref name="Griewank2">{{harvtxt|Griewank|2010|p=2}}</ref>
An important consideration, when using dropped tunings, is that the lower the notes, the muddier or less focused that guitar can sound. It is possible to overcome this issue by using post-processing effects in the studio, or guitar pedals that alter the EQ when performing live.
 
[[Chord inversion]] is especially simple in major-thirds tuning. The guitarist can invert chords by raising one or two notes on three strings—playing the raised notes with the same finger as the original notes. In contrast, inverting triads in standard and all-fourths tuning requires three fingers on a span of four frets.<ref name="Griewank10">{{harvtxt|Griewank|2010|p=10}}</ref> In standard tuning, the shape of an inversion depends on the involvement of the major-third between the 2nd and 3rd strings.<ref name="DenyerTriads">{{harvtxt|Denyer|1992|<!-- loc='Playing the guitar: The harmonic guitarist, Interval inversions, Triads, Triad inversions', p.&nbsp; -->p=121}}</ref>
* '''One Step Lower:''' D-G-c-f-a-d'
 
=== All fifths and "new standard tuning" ===
This tuning is achieved by going the full step down.
[[File:New standard tuning.png|thumb|right|New standard tuning.]]
One band in particular known to have used this tuning is [[Killing Joke]].
[[File:Guitar Crafty Tuning.ogg|right|thumb|alt=Audio file of New Standard Tuning's open notes.|New Standard Tuning's open strings]]
{{Main|All fifths tuning|New standard tuning}}
:C<sub>2</sub>–G<sub>2</sub>–D<sub>3</sub>–A<sub>3</sub>–E<sub>4</sub>–B<sub>4</sub>
 
All-fifths tuning is a tuning in intervals of [[perfect fifth]]s like that of a [[mandolin]] or a [[violin]]; other names include "perfect fifths" and "fifths".<ref>{{harvtxt|Sethares|2001|loc='The mandoguitar tuning' 62–63}}</ref> It has a wide range. Its implementation has been impossible with nylon strings and has been difficult with conventional steel strings. The high B makes the first string very taut, and consequently, a conventionally gauged string easily breaks.
===Classical guitar tunings===
The classical guitar developed over a period of 500 years and a number of guitar tunings are commonly used this genre, some based upon historical practice. Unlike other musical styles, in which alternate tunings are used by artists largely as a matter of individual preference, in classical guitar styles, the decision to employ alternate tunings such as this largely resides with composers or (more usually) arrangers of musical transcriptions. Thus, classical guitarists performing known transcriptions are assumed to be using defined tunings.
* '''Renaissance [[lute]] tuning:''' E-A-d-f#-b-e'
This tuning may also be used with a [[capo]] at the third fret to match the common lute pitch: G-c-f-a-d'-g'. This tuning also matches standard [[vihuela]] tuning and is often employed in classical guitar transcriptions of music written for those instruments.
*'''"Pseudo Russian" or "g" tuning:''' D-G-d-g-b-e'
A versatile tuning examples of which can be heard in ''Choro de Saudade'' by [[Agustín Barrios]] and also in well known transcriptions of ''La Maja de Goya'' by [[Enrique Granados]] and ''Sevilla'' by [[Isaac Albéniz]].
 
Jazz guitarist [[Carl Kress]] used a variation of all-fifths tuning—with the bottom four strings in fifths, and the top two strings in thirds, resulting in B{{music|b}}<sub>1</sub>–F<sub>2</sub>–C<sub>3</sub>–G<sub>3</sub>–B<sub>3</sub>–D<sub>4</sub>. This facilitated tenor banjo chord shapes on the bottom four strings and plectrum banjo chord shapes on the top four strings. Contemporary New York jazz-guitarist Marty Grosz uses this tuning.
Various other [[scordatura]] have been utilised by composers and players, dependent on the demands of the music, for example [[Fernando Sor]] wrote pieces for the sixth string tuned to F and the twentieth century player [[John Williams (guitarist)|John Williams]] tuned his fifth string to B for his transcription of ''Granada'' by Isaac Albéniz, recorded in 1980.
 
All-fifths tuning has been approximated by the so-called "[[New Standard Tuning]]" (NST) of [[King Crimson]]'s [[Robert Fripp]], in which NST replaces all-fifths' high B<sub>4</sub> with a high G<sub>4</sub>. To build chords, Fripp uses "perfect intervals in fourths, fifths and octaves", so avoiding [[minor third]]s and especially [[major third]]s,<ref>{{cite journal|first=Tom|last=Mulhern|date=January 1986|title=On the discipline of craft and art: An interview with Robert Fripp|journal=Guitar Player|volume=20|pages=88–103|url=http://www.mulhern.com/articles/Fripp.html|access-date=8 January 2013|url-status=dead|archive-url=https://web.archive.org/web/20150216200827/http://www.mulhern.com/articles/Fripp.html|archive-date=16 February 2015}}</ref> which are slightly sharp in [[equal temperament]] tuning (in comparison to thirds in [[just intonation]]). It is a challenge to adapt conventional guitar-chords to new standard tuning, which is based on all-fifths tuning.{{efn|1=Musicologist Eric Tamm wrote that despite "considerable effort and search I just could not find a good set of chords whose sound I liked" for [[rhythm guitar]].<ref>{{harvtxt|Tamm|2003}}</ref>}} Some closely voiced [[jazz chords]] become impractical in NST and all-fifths tuning.<ref name="Mandoguitar">{{harvtxt|Sethares|2001|loc='The mandoguitar tuning', pp.&nbsp;62–63}}</ref>
===Open tunings===
An [[open tuning]] is a type of guitar tuning in which the open strings are tuned to form a common chord (usually major) which can be 'transposed' to any higher pitch simply by placing a finger across all of the strings at any chosen fret. Blues slide guitarists often take advantage of this effect, whereas fingerstyle guitarists tend to use various combinations of the open strings to provide a sustained chordal accompaniment to melodies played on fretted higher strings.
* '''Open G:''' D-G-d-g-b-d'
This tuning is commonly used for [[blues music|blues]], or slide guitar. In classical guitar this is sometimes referred to as the dropped G tuning. It retains the relationship of the fourth between the two lower strings. This is also known as 'bluegrass guitar' tuning.
* '''[[Open D tuning|Open D]]:''' D-A-d-f#-a-d'
* '''Open E:''' E-B-e-g#-b-e'
* '''Open A:''' E-A-e-a-c#'-e'
* '''Open C:''' C-G-c-g-c'-e'
* '''Open D minor:''' D-A-d-f-a-d'
 
===Miscellaneous Instrumental tunings= ==
These are tunings in which some or all strings are retuned to emulate the standard tuning of some other instrument, such as a lute, banjo, cittern, mandolin, etc. Many of these tunings overlap other categories, especially open and modal tunings.
* '''Dobro:''' G-B-d-g-b-d'
This is commonly used for squareneck [[resonator guitar]]s. The lack of a low D means that a complete strum does not have the same harmonic strength that the Open G has.
* '''All fourths:''' E-A-d-g-c'-f'
This tuning is like that of the lowest four strings in standard tuning. It removes from standard tuning the irregularity of the interval of a third between the second and third strings. With regular tunings like this, chords can simply be moved down or across the fretboard, dramatically reducing the number of different finger positions that need to be memorized. The disadvantage is that not all major and minor chords can be played with all six strings at once.
* '''All fifths:''' C-G-d-a-e'-b'
This is a tuning in intervals of fifths like that of a [[mandolin]] or a [[violin]]. Has a remarkably wide range, though it is difficult to achieve (the high b" makes the first string very taut such that it will break easily), and may not play well on an acoustic guitar (the low C is too low to resonate properly in a standard guitar's body).
* '''[[Robert Fripp]]'s "[[New Standard Tuning]]":''' C-G-d-a-e'-g'
This is a devised by [[Robert Fripp]] of [[King Crimson]], used by most [[Guitar Craft]] students around the world. The tuning is similar to all fifths except the first string is dropped from b' to g'. Some guitarists maintain that the term 'New Standard Tuning' is a misnomer and consider it to be a source of controversy, but the name appears to have stuck due the absence of viable alternative designations. Time will tell whether the tuning is in fact accepted outside of GC as a viable all-purpose tuning.
* '''[[DADGAD]]:''' D-A-d-g-a-d'
Popularised by [[Davey Graham]] after having been inspired by Arabic [[oud]] tuning while living in Morocco, DADGAD tuning is now frequently used in [[Celtic music]], and by artists such as [[Neil Young]], [[Jimmy Page]], [[Pierre Bensusan]], [[Soig Siberil]] and [[Paul McSherry]].
* '''Major third guitar tuning:''' E-G#-c-e-g#-c'
This tuning devised in 1960s by jazz guitarist [[Ralph Patt]]. One large benefit of the major third tuning scheme is that all 12 notes in a [[chromatic scale]] are comfortably playable within the one position on a fretboard, making intricate single-line music easy to play and sight-read. Also, all chords are closely spread and the fingerings are the same for all 24 major and minor keys. This opens up endless harmonic possibilities for playing and transposing into any key and makes playing chords a comfortable task that is easy to learn. Though, this tuning scheme is not suitable for standard folk chords that are designed for standard guitar tuning and a lack of open A and D strings causes certain classical pieces to become difficult to play.
* '''Orkney tuning:''' C-G-d-g-c'-d'
It is a wonderful tool for melodic (non-linear) playing, in which you avoid playing subsequent notes on the same string.
* '''Nashville tuning'''
This is achieved on a high-strung guitar - a guitar strung with only the high strings of a 12-string guitar set. This is known as "Nashville tuning" when the strings are in standard tuning.
* '''G tuning''' G-c-f-b♭-d'-g'
Some guitar manufacturers recommend all six strings of their mini-scaled (3/4 and 1/2) guitar models (Epiphone Flying Vee-Wee, for example) be tuned one and a half steps or a minor-third higher than standard tuning. This is primarily intended to keep good tuning stability of those short-scaled guitars with the tension of strings close to that of the original strings design. For example, a 1/2 scale Johnson mini-Strat type guitar has a scale length of 20.75 inches, about 18% shorter than that of a regular Strat's 25.5 inches, requiring about the same magnitude of less tension on strings in order to produce the same pitches with the same string gauges, which often could result in a significant tuning stability problem. Unlike other alternative tunings, this tuning maintains the relative pitches or intervals of standard tuning between strings so that it only requires simple transposing for playing any score.
*'''[[Ostrich guitar]] tuning''' D-d-d-d-d'-d'
A tuning pioneered by [[Lou Reed]] in which all strings are tuned to D.
 
== Miscellaneous or "special" tunings ==
* '''12-string guitar tuning used in traditinal Swedish folk music''' A (one octav below regular)-D (one octave below regular)-A-D-a-d
This category includes everything that does not fit into any of the other categories, for example (but not limited to): tunings designated only for a particular piece; non-western intervals and modes; [[Microtonal music|micro- or macro-tones]] (half sharps/flats, etc.); and "hybrid tunings" combining features of major alternate tuning categories – most commonly an open tuning with the lowest string dropped.<ref>Whitehill, Dave; ''Alternate Tunings for Guitar''; p. 5 {{ISBN|0793582199}}</ref>
This tuning was pioneered by Roger Tallroth, a guitarist and folk musician from sweden. By using thick nylon strings (for tenor guitar) on the low A and low D (tuned unison), it creates a very fat bass guitar sound to the 12-string guitar and suited to play a lot of bass walkings. The tuning is widely used in Sweden for playing traditional Swedish folk music.
<!--Please do not add tunings to THIS ARTICLE unless you provide a reliable source mentioning the tuning. Other tunings (for which reliable sources may be found in the future) can be added to the LIST OF GUITAR TUNINGS.
Thank you for your cooperation.-->
 
== See also ==
===Complete range of string pitch combinations===
* [[Bass guitar tuning]]
* [[List of guitar tunings]]
* [[Music and mathematics]]
* [[Open G tuning]]
* [[Stringed instrument tunings]]
* [[DADGAD]]
 
== Notes ==
Each of the six strings can be alternately tuned as low as a whole step lower and as much as a whole step higher without stressing the neck or the strings. With five possible tunings for each string (+2, +1, 0, -1, and -2), there can be as many as 15,625 possible tunings for a six-string guitar.
{{notelist}}
Note that a standard guitar sounds one octave below pitch as written in [[Musical notation|standard notation]]. That is, the first string in standard tuning plays the E note that is a major third above middle C, and is written on the staff as a major tenth above middle C.
 
== Citations ==
There are also [[tenor guitar]]s, [[baritone guitar]]s tuned BEADF#B (or ADGCEA, GDGCDG, GDGCEA, GCGCEG, etc.) a fourth lower than a standard (prime) guitar, [[treble guitar]]s tuned a fourth higher than a prime guitar and [[contrabass guitar]]s, which are tuned one octave lower than prime guitars. Seven string guitars have an extra low string which is a B in standard tuning.
{{Reflist}}
 
== References ==
== Artists noted for their use of alternate tunings ==
* {{cite book|title=Handbook of Guitar and Lute Composers|first1=Hannu|last1=Annala|first2=Heiki|last2=Mätlik|translator=Katarina Backman|publisher=Mel Bay|year=2007|chapter=Composers for other plucked instruments: Rudolf Straube (1717–1785)|isbn=978-0-7866-5844-2}}
* {{cite book|title=The illustrated history of the guitar|first=Alexander|last=Bellow|publisher=Colombo Publications|year=1970|url=https://books.google.com/books?id=T7k5AQAAIAAJ}}
* {{Cite book
| title = The guitar handbook
| first = Ralph
| last = Denyer
| others = Special contributors [[Isaac&nbsp;Guillory]] and <!-- NOT [[Alastair Crawford]] -->Alastair&nbsp;M.&nbsp;Crawford
| pages =65–160
| chapter=Playing the guitar ('How the guitar is tuned', pp.&nbsp;68–69, and 'Alternative tunings', pp.&nbsp;158–159)
| isbn = 0-330-32750-X
| ___location = London and Sydney
| publisher = Pan Books
| edition= Fully revised and updated
| year = 1992
}}
* {{cite book|chapter=Stanley Jordan|first=Jim |last=Ferguson|author-link=Jim Ferguson|pages=68–76|title=New directions in modern guitar|series=''[[Guitar&nbsp;Player]]'' basic library|editor1-first=Helen|editor1-last=Casabona|editor2-first=Adrian|editor2-last=Belew|editor2-link=Adrian Belew|publisher=Hal Leonard Publishing|year=1986|chapter-url=https://books.google.com/books?id=3idLAAAAYAAJ&q=%22Stanley+Jordan%22,+%22all+fourth%22+OR+%22perfect+fourth%22,+guitar+tuning|isbn=978-0-88188-423-4}}
* {{citation|last=Griewank|first=Andreas|title=Tuning guitars and reading music in major thirds|date=1 January 2010|url=http://vs24.kobv.de/opus4-matheon/frontdoor/index/index/docId/675<!--MSC-Classification 97M80 Arts. Music. Language. Architecture-->|series=Matheon preprints|volume=695|publisher=DFG research center "MATHEON, Mathematics for key technologies" Berlin|___location=Berlin, Germany|id={{URN|nbn|de:0296-matheon-6755}}. [http://vs24.kobv.de/opus4-matheon/files/675/7047_mathtune.ps Postscript file] and [http://vs24.kobv.de/opus4-matheon/files/675/7046_mathtune.pdf Pdf file]|url-status=dead|archive-url=https://web.archive.org/web/20121108070453/http://vs24.kobv.de/opus4-matheon/frontdoor/index/index/docId/675|archive-date=8 November 2012}}
* {{cite book|last=Grossman|first=Stefan|author-link=Stefan Grossman|title=The book of guitar tunings|year=1972|publisher=Amsco Publishing Company|___location=New York|isbn=0-8256-2806-7|url=https://books.google.com/books?id=It6wOwAACAAJ|lccn=74-170019<!-- 26 July 2012: The lccn links to another book. However, this is the number printed. Kiefer.Wolfowitz -->}}
* {{cite book |last=Persichetti |first=Vincent |author-link=Vincent Persichetti |title=Twentieth-century harmony: Creative aspects and practice |year=1961 |publisher=W. W. Norton |___location=New York |isbn=0-393-09539-8 |oclc=398434 |url-access=registration |url=https://archive.org/details/isbn_9780393095395 }}
* {{cite journal|title=Tuning in thirds: A new approach to playing leads to a new kind of guitar|first=Jonathon|last=Peterson<!-- Peterson is listed as Associate Editor on page 66 -->|___location=Tacoma, WA|url=http://www.luth.org/backissues/al69-72/al72.htm|journal=American Lutherie: The Quarterly Journal of the Guild of American Luthiers|publisher=The Guild of American Luthiers|issn=1041-7176|volume=72|issue=Winter|year=2002|access-date=9 October 2012|pages=36–43|url-status=dead|archive-url=https://web.archive.org/web/20111021185726/http://www.luth.org/backissues/al69-72/al72.htm|archive-date=21 October 2011}}
*{{cite book|last=Roche|first=Eric|author-link=Eric Roche|year=2004|chapter=5 Thinking outside the box|title=The acoustic&nbsp;guitar Bible|publisher=Bobcat Books Limited, SMT|___location=London|isbn=1-84492-063-1|pages=151–178}}
*{{cite book|year=2001|chapter=Regular&nbsp;tunings|title=Alternate tuning guide|first=Bill|last=Sethares|author-link=William Sethares|pages=52–67|chapter-url=http://sethares.engr.wisc.edu/alternatetunings/regulartunings.pdf|publisher=University of Wisconsin; Department of Electrical Engineering|___location=Madison, Wisconsin|access-date=19 May 2012}}
*{{cite book|year=2009|title=Alternate tuning guide|first=Bill|last=Sethares|author-link=William Sethares|url=http://sethares.engr.wisc.edu/alternatetunings/regulartunings.pdf|orig-year=2001|publisher=University of Wisconsin; Department of Electrical Engineering|___location=Madison, Wisconsin|access-date=19 May 2012}}
*{{cite web|title=Alternate tuning guide|first=William A.|last=Sethares|author-link=William Sethares|year=2011|url=http://sethares.engr.wisc.edu/alternatetunings/alternatetunings.html|publisher=University of Wisconsin; Department of Electrical Engineering|___location=Madison, Wisconsin|access-date=19 May 2012}}
* {{cite book|title=Robert Fripp: From crimson king to crafty master|first=Eric|last=Tamm|chapter=Chapter Ten: Guitar Craft|chapter-url=http://www.progressiveears.com/frippbook/ch10.htm|year=2003|orig-year=1990|publisher=Faber and Faber|isbn=0-571-16289-4|via=Progressive Ears|access-date=25 March 2012|url-status=dead|archive-url=https://web.archive.org/web/20111026180438/http://www.progressiveears.com/frippbook/ch10.htm|archive-date=26 October 2011}} [http://www.erictamm.com/rf.zip Zipped Microsoft Word Document]
* {{cite book|title=Guitar tunings: A comprehensive guide|first=Dick|last=Weissman|author-link=Dick Weissman|url=https://books.google.com/books?id=-rRf8x53|publisher=Routledge|year=2006|lccn=0415974410|isbn=978-0-415-97441-7}}{{Dead link|date=September 2023 |bot=InternetArchiveBot |fix-attempted=yes }}
 
== Further reading ==
* [[Alex DeGrassi]]
* {{cite book|ref=none|last=Anonymous|title=Alternate tunings guitar essentials|series=''Acoustic Guitar'' Magazine's private lessons|others=String Letter Publishing|url=https://books.google.com/books?id=GOoDAAAACAAJ|publisher=Hal Leonard Publishing Corporation|year=2000|lccn= 2001547503 |isbn=978-1-890490-24-9}}
* [[Alice in Chains]]
* {{cite book|ref=none|title=The complete book of alternate tunings|last=Hanson|first=Mark|isbn=978-0-936799-13-1|url=https://books.google.com/books?id=eLIFNAAACAAJ|year=1995|publisher=Accent on Music}}
* [[Ani DiFranco]]
* {{cite book|ref=none|title=Alternate&nbsp;tunings picture chords|first=Mark|last=Hanson|publisher=Accent on Music|url=https://books.google.com/books?id=XZ8DAAAACAAJ|year=1997|isbn=978-0-936799-14-8}}
* [[Brad Delson]] of [[Linkin Park]]
* {{cite book|ref=none|title=Mastering alternate tunings: A revolutionary system of fretboard navigation for fingerstyle guitarists|first=Danny|last=Heines|url=https://books.google.com/books?id=dlIqAQAAIAAJ|publisher=Hal Leonard|year=2007|isbn=978-0-634-06569-9}}
* [[Chris Whitley]]
* {{cite book|ref=none|title=Alternate&nbsp;tuning chord dictionary|last=Johnson|first=Chad|isbn=978-0-634-03857-0|lccn=2005561612|url=https://books.google.com/books?id=PskMAAAACAAJ|year=2002|publisher=Hal&nbsp;Leonard}}
* [[Collective Soul]]
* {{cite book|ref=none|title=Alternate tunings for guitar|first=Richard|last=Maloof|publisher=Cherry Lane Music Company|year=2007|url=https://books.google.com/books?id=StgYAAAACAAJ|isbn=978-1-57560-578-4|lccn= 2008560110 }}
* [[Crosby, Stills, Nash and Young]]
* {{cite book|ref=none|title=The tao of tunings: A map to the world of alternate tunings|first=Mark|last=Shark|url=https://books.google.com/books?id=cYfzdF0TQm4C|publisher=Hal Leonard Corporation|year=2008|isbn=978-1-4234-3087-2}}
* [[Daron Malakian]] of [[System of a Down]]
* [[Dashboard Confessional]]
* [[Davey Graham]]
* [[David Gilmour]] of [[Pink Floyd]]
* [[Don Ross]]
* [[Edward Van Halen]] of [[Van Halen]]
* [[Elliott Smith]]
* [[Fredrik Thordendal]] and [[Mårten Hagström]] of [[Meshuggah]]
* [[Gilles Le Bigot]]
* [[Guns N' Roses]]
* [[Jack White]] of [[The White Stripes]]
* [[Jeff Martin]] of [[The Tea Party]]
* [[Jimmy Page]] of [[Led Zeppelin]]
* [[John Butler (musician)|John Butler]]
* [[John Martyn]]
* [[John Renbourn]]
* [[John Rzeznik]] of [[Goo Goo Dolls]]
* [[Jon Buckland]] of [[Coldplay]]
* [[Jon Gomm]]
* [[Jonatha Brooke]]
* [[Joni Mitchell]]
* [[Josh Homme]]
* [[Justin King]]
* [[Kaki King]]
* [[Keith Richards]] of [[The Rolling Stones]]
* [[King Crimson]]
* [[Korn]]
* [[Leo Kottke]]
* [[Lou Reed]]
* [[Mark Kozelek]] of [[Red House Painters]] and [[Sun Kil Moon]]
* [[Mark Tremonti]] of [[Creed (band)|Creed]] and [[Alter Bridge]]
* [[Megan Slankard]]
* [[Metallica]]
* [[Michael Berk]]
* [[Michael Hedges]]
* [[Neil Young]]
* [[Nick Drake]]
* [[Nirvana]]
* [[Norma Jean]]
* [[Pat Metheny]]
* [[Paul McSherry]]
* [[Peter Mulvey]]
* [[Phil Keaggy]]
* [[Pierce Pettis]]
* [[Placebo (band)|Placebo]]
* [[Poison the well]]
* [[Robert Johnson (musician)|Robert Johnson]]
* [[Si Hayden]]
* [[Soig Siberil]]
* [[Sonic Youth]]
* [[Soundgarden]]
* [[Stephen Malkmus]] of [[Pavement]]
* [[Thurston Moore]] and [[Lee Ranaldo]] of [[Sonic Youth]]
* [[Tim Rogers]] of [[You Am I]]
* [[Tommy Emmanuel]]
* [[Tony Iommi]] of [[Black Sabbath]]
* [[Turtle Writing]]
* [[William Ackerman]]
* [[Wintersleep]]
 
==See also==
 
[http://en.wikipedia.org/wiki/Bass_guitar#Strings_and_tuning Bass guitar tuning]
 
== External links ==
* {{cite web|ref=none|url=http://sethares.engr.wisc.edu/alternatetunings/alternatetuningsInteractive.html|title=Alternate&nbsp;tuning guide: Interactive|first=William A.|last=Sethares|author-link=William Sethares|access-date=27 June 2012|date=12 May 2012|id=Uses Wolfram Cdf player}}
 
{{Wikibooks|Guitar|Tuning the Guitar|Tuning the Guitar (to standard tuning)}}
*[http://www.howtotuneaguitar.org/ Guitar Tuning] - How To Tune A Guitar
{{Wikibooks|Guitar|Alternate Tunings|Alternative tunings}}
*[http://www.guitar-tuning.net Guitar Tuning]
*[http://www.actiontab.com/tuner.html Guitar Tuner]
*[http://visualguitar.com/tuning.html Visual Guitar Tuning Diagram]
*[http://wehow.ehow.com/how_2001055_tune-guitar.html How to Tune a Guitar]
*[http://chrisbsmusicinc.stores.yahoo.net/howtotune.html How to Tune a Guitar]
 
 
 
[[Category:{{Guitar tunings]]|state=expanded}}
{{Guitars|Playing|state=collapsed}}
 
[[Category:Guitar tunings| ]]
[[da:Guitarstemning]]
[[no:Gitarstemming]]