Content deleted Content added
Citation bot (talk | contribs) Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles with example code | #UCB_Category 75/101 |
|||
(15 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Algorithm on linear-feedback shift registers}}
{{distinguish|Berlekamp's algorithm}}
[[File:Berlekamp–Massey algorithm.png|thumb|right|Berlekamp–Massey algorithm]]
The '''Berlekamp–Massey algorithm''' is an [[algorithm]] that will find the shortest [[linear
[[Elwyn Berlekamp]] invented an algorithm for decoding [[BCH code|Bose–Chaudhuri–Hocquenghem (BCH) codes]].<ref>{{Citation
Line 31 ⟶ 33:
|url= http://crypto.stanford.edu/~mironov/cs359/massey.pdf
|doi= 10.1109/TIT.1969.1054260
}}</ref><ref>{{Citation
|last1= Ben Atti
Line 44 ⟶ 47:
|url= http://hlombardi.free.fr/publis/ABMAvar.html
|doi= 10.1007/s00200-005-0190-z
|arxiv= 2211.11721
▲|s2cid= 14944277
|s2cid= 14944277
}}</ref> Massey termed the algorithm the LFSR Synthesis Algorithm (Berlekamp Iterative Algorithm),<ref>{{Harvnb|Massey|1969|p=124}}</ref> but it is now known as the Berlekamp–Massey algorithm.
Line 86 ⟶ 90:
:<math> d = d - (d/b)b = d - d = 0.</math>
The algorithm also needs to increase ''L'' (number of errors) as needed. If ''L'' equals the actual number of errors, then during the iteration process, the discrepancies will become zero before ''n'' becomes greater than or equal to 2''L''. Otherwise ''L'' is updated and the algorithm will update ''B''(''x''), ''b'', increase ''L'', and reset ''m'' = 1. The formula ''L'' = (''n'' + 1 − ''L'') limits ''L'' to the number of available syndromes used to calculate discrepancies, and also handles the case where ''L'' increases by more than 1.
==
The algorithm from {{Harvtxt|Massey|1969|p=124}} for an arbitrary field:
<!-- Notes: notation changes from Massey:
Massey Here
Line 101 ⟶ 104:
T(D) T(x) polynomial
-->
<div class="mw-highlight mw-highlight-lang-c mw-content-ltr">
polynomial(field ''K'') s(x) = ... <span class="cm">/* coeffs are
<span class="cm">/* connection polynomial */</span>
polynomial(field K) C(x) = 1; <span class="cm">/* coeffs are
polynomial(field K) B(x) = 1;
int L = 0;
int m = 1;
field K b = 1;
int n;
<span class="cm">/* steps 2. and 6. */</span>▼
<span class="k">for</span> (n = 0; n < N; n++) {▼
▲ /* steps 2. and 6. */
<span class="cm">/* step 2. calculate discrepancy */</span>▼
▲ for (n = 0; n < N; n++) {
field K d = s<sub>n</sub> + {{math|∑{{su|p=L|b=i=1}} c<sub>i</sub> s<sub>n - i</sub>}} <!--Σi=1Lci⋅sn−i;-->
▲ /* step 2. calculate discrepancy */
<span class="k">if</span> (d == 0) {▼
<span class="cm">/* step 3. discrepancy is zero; annihilation continues */</span>
▲ if (d == 0) {
} <span class="k">else</span> <span class="k">if</span> (2 * L <= n) {
<span class="cm">/*
C(x) = C(x) - d b<sup>−1</sup> x<sup>m</sup> B(x);
} <span
<span class="cm">/* step 4. */</span>▼
C(x) = C(x) - d b<sup>−1</sup> x<sup>m</sup> B(x);
▲ /* step 4. */
<span class="k">return</span> L;
▲ }
</div>
In the case of binary GF(2) BCH code, the discrepancy d will be zero on all odd steps, so a check can be added to avoid calculating it.
{{sxhl|2=c|1=<nowiki/>
/* ... */▼
for (n = 0; n < N; n++) {▼
▲/* ... */
/* if odd step number, discrepancy == 0, no need to calculate it */
▲ for (n = 0; n < N; n++) {
/* ...
}}
==See also==
* [[Reed–Solomon error correction]]
* [[Reeds–Sloane algorithm]], an extension for sequences over integers mod ''n''
* [[Nonlinear-feedback shift register]] (NLFSR)
==References==
Line 161 ⟶ 162:
==External links==
* {{springer|title=Berlekamp-Massey algorithm|id=p/b120140}}
*
* {{MathWorld|urlname=Berlekamp-MasseyAlgorithm|title=Berlekamp–Massey Algorithm}}
* [https://code.google.com/p/lfsr/ GF(2) implementation in Mathematica]
|