Content deleted Content added
Tag: Reverted |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 20/967 |
||
(26 intermediate revisions by 14 users not shown) | |||
Line 1:
{{short description|Automatic generation or recognition of paraphrased text}}
{{about|automated generation and recognition of paraphrases||Paraphrase (disambiguation)}}
'''Paraphrase''' or '''paraphrasing''' in [[computational linguistics]] is the [[natural language processing]] task of detecting and generating [[paraphrase]]s. Applications of paraphrasing are varied including information retrieval, [[question answering]], [[Automatic summarization|text summarization]], and [[plagiarism detection]].<ref name=Socher /> Paraphrasing is also useful in the [[evaluation of machine translation]],<ref name=Callison>{{cite conference |last=Callison-Burch |first=Chris |title=Syntactic Constraints on Paraphrases Extracted from Parallel Corpora |conference=EMNLP '08 Proceedings of the Conference on Empirical Methods in Natural Language Processing |date=October 25–27, 2008 |place=Honolulu, Hawaii |pages=196–205|url=https://dl.acm.org/citation.cfm?id=1613743}}</ref> as well as [[semantic parsing]]<ref>Berant, Jonathan, and Percy Liang. "[http://www.aclweb.org/anthology/P14-1133 Semantic parsing via paraphrasing]." Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2014.</ref> and [[natural language generation|generation]]<ref>{{Cite book |last1=Wahle |first1=Jan Philip |last2=Ruas |first2=Terry |last3=Kirstein |first3=Frederic |last4=Gipp |first4=Bela |chapter=How Large Language Models are Transforming Machine-Paraphrase Plagiarism |date=2022 |title=Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing |pages=952–963 |___location=Online and Abu Dhabi, United Arab Emirates|doi=10.18653/v1/2022.emnlp-main.62 |arxiv=2210.03568 }}</ref> of new samples to expand existing [[Text corpus|corpora]].<ref name=Barzilay />
== Paraphrase generation ==
=== Multiple sequence alignment ===
Barzilay and Lee<ref name=Barzilay>{{cite conference|last1=Barzilay|first1=Regina|last2=Lee|first2=Lillian|title=Learning to Paraphrase: An Unsupervised Approach Using Multiple-Sequence Alignment|conference=Proceedings of HLT-NAACL 2003|date=May–June 2003|url=
* finding recurring patterns in each individual corpus, i.e. "{{mvar|X}} (injured/wounded) {{mvar|Y}} people, {{mvar|Z}} seriously" where {{mvar|X, Y, Z}} are variables
* finding pairings between such patterns the represent paraphrases, i.e. "{{mvar|X}} (injured/wounded) {{mvar|Y}} people, {{mvar|Z}} seriously" and "{{mvar|Y}} were (wounded/hurt) by {{mvar|X}}, among them {{mvar|Z}} were in serious condition"
This is achieved by first clustering similar sentences together using [[n-gram]] overlap. Recurring patterns are found within clusters by using multi-sequence alignment. Then the position of argument words
=== Phrase-based
Paraphrase can also be generated through the use of [[statistical machine translation#Phrase-based translation|phrase-based translation]] as proposed by Bannard and Callison-Burch.<ref name=Bannard>{{cite conference |last1=Bannard|first1=Colin|last2=Callison-Burch|first2=Chris|title=Paraphrasing Bilingual Parallel Corpora |conference=Proceedings of the 43rd Annual Meeting of the ACL |place=Ann Arbor, Michigan|pages=597–604|year=2005|url=https://dl.acm.org/citation.cfm?id=1219914}}</ref> The chief concept consists of aligning phrases in a [[pivot language]] to produce potential paraphrases in the original language. For example, the phrase "under control" in an English sentence is aligned with the phrase "unter kontrolle" in its German counterpart. The phrase "unter kontrolle" is then found in another German sentence with the aligned English phrase being "in check
The probability distribution can be modeled as <math>\Pr(e_2 | e_1)</math>, the probability phrase <math>e_2</math> is a paraphrase of <math>e_1</math>, which is equivalent to <math>\Pr(e_2|f) \Pr(f|e_1)</math> summed over all <math>f</math>, a potential phrase translation in the pivot language. Additionally, the sentence <math>e_1</math> is added as a prior to add context to the paraphrase. Thus the optimal paraphrase, <math>\hat{e_2}</math> can be modeled as:
Line 23 ⟶ 22:
=== Long short-term memory ===
There has been success in using [[long short-term memory]] (LSTM) models to generate paraphrases.<ref name=Prakash>{{Citation|last1=Prakash|first1=Aaditya|last2=Hasan|first2=Sadid A.|last3=Lee|first3=Kathy|last4=Datla|first4=Vivek|last5=Qadir|first5=Ashequl|last6=Liu|first6=Joey|last7=Farri|first7=Oladimeji|title=Neural Paraphrase Generation with Staked Residual LSTM Networks|year=2016|arxiv=1610.03098|bibcode=2016arXiv161003098P}}</ref> In short, the model consists of an encoder and decoder component, both implemented using variations of a stacked [[Vanishing gradient problem#Residual networks|residual]] LSTM. First, the encoding LSTM takes a [[one-hot]] encoding of all the words in a sentence as input and produces a final hidden vector, which can
=== Transformers ===
With the introduction of [[Transformer (machine learning model)|Transformer models]], paraphrase generation approaches improved their ability to generate text by scaling [[neural network]] parameters and heavily parallelizing training through [[Feedforward neural network|feed-forward layers]].<ref>{{Cite book |last1=Zhou |first1=Jianing |last2=Bhat |first2=Suma |title=Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |chapter=Paraphrase Generation: A Survey of the State of the Art |date=2021 |chapter-url=https://aclanthology.org/2021.emnlp-main.414 |language=en |___location=Online and Punta Cana, Dominican Republic |publisher=Association for Computational Linguistics |pages=5075–5086 |doi=10.18653/v1/2021.emnlp-main.414|s2cid=243865349 |doi-access=free }}</ref> These models are so fluent in generating text that human experts cannot identify if an example was human-authored or machine-generated.<ref>{{Cite journal |last1=Dou |first1=Yao |last2=Forbes |first2=Maxwell |last3=Koncel-Kedziorski |first3=Rik |last4=Smith |first4=Noah |last5=Choi |first5=Yejin |date=2022 |title=Is GPT-3 Text Indistinguishable from Human Text? Scarecrow: A Framework for Scrutinizing Machine Text |url=https://aclanthology.org/2022.acl-long.501 |journal=Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |language=en |___location=Dublin, Ireland |publisher=Association for Computational Linguistics |pages=7250–7274 |doi=10.18653/v1/2022.acl-long.501|s2cid=247315430 |doi-access=free |arxiv=2107.01294 }}</ref> Transformer-based paraphrase generation relies on [[Autoencoder|autoencoding]], [[Autoregressive model|autoregressive]], or [[Seq2seq|sequence-to-sequence]] methods. Autoencoder models predict word replacement candidates with a one-hot distribution over the vocabulary, while autoregressive and seq2seq models generate new text based on the source predicting one word at a time.<ref>{{Cite journal |last1=Liu |first1=Xianggen |last2=Mou |first2=Lili |last3=Meng |first3=Fandong |last4=Zhou |first4=Hao |last5=Zhou |first5=Jie |last6=Song |first6=Sen |date=2020 |title=Unsupervised Paraphrasing by Simulated Annealing |url=https://www.aclweb.org/anthology/2020.acl-main.28 |journal=Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics |language=en |___location=Online |publisher=Association for Computational Linguistics |pages=302–312 |doi=10.18653/v1/2020.acl-main.28|s2cid=202537332 |doi-access=free |arxiv=1909.03588 }}</ref><ref>{{Cite book |last1=Wahle |first1=Jan Philip |last2=Ruas |first2=Terry |last3=Meuschke |first3=Norman |last4=Gipp |first4=Bela |title=2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) |chapter=Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection |year=2021 |___location=Champaign, IL, USA |publisher=IEEE |pages=226–229 |doi=10.1109/JCDL52503.2021.00065 |isbn=978-1-6654-1770-9|s2cid=232320374 |arxiv=2103.12450 }}</ref> More advanced efforts also exist to make paraphrasing controllable according to predefined quality dimensions, such as semantic preservation or lexical diversity.<ref>{{Cite journal |last1=Bandel |first1=Elron |last2=Aharonov |first2=Ranit |last3=Shmueli-Scheuer |first3=Michal |last4=Shnayderman |first4=Ilya |last5=Slonim |first5=Noam |last6=Ein-Dor |first6=Liat |date=2022 |title=Quality Controlled Paraphrase Generation |url=https://aclanthology.org/2022.acl-long.45 |journal=Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |language=en |___location=Dublin, Ireland |publisher=Association for Computational Linguistics |pages=596–609 |doi=10.18653/v1/2022.acl-long.45|doi-access=free |arxiv=2203.10940 }}</ref> Many Transformer-based paraphrase generation methods rely on unsupervised learning to leverage large amounts of training data and scale their methods.<ref>{{Cite book |last1=Lee |first1=John Sie Yuen |last2=Lim |first2=Ho Hung |last3=Carol Webster |first3=Carol |title=Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies |chapter=Unsupervised Paraphrasability Prediction for Compound Nominalizations |date=2022 |chapter-url=https://aclanthology.org/2022.naacl-main.237 |language=en |___location=Seattle, United States |publisher=Association for Computational Linguistics |pages=3254–3263 |doi=10.18653/v1/2022.naacl-main.237|s2cid=250390695 |doi-access=free }}</ref><ref>{{Cite book |last1=Niu |first1=Tong |last2=Yavuz |first2=Semih |last3=Zhou |first3=Yingbo |last4=Keskar |first4=Nitish Shirish |last5=Wang |first5=Huan |last6=Xiong |first6=Caiming |title=Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |chapter=Unsupervised Paraphrasing with Pretrained Language Models |date=2021 |chapter-url=https://aclanthology.org/2021.emnlp-main.417 |language=en |___location=Online and Punta Cana, Dominican Republic |publisher=Association for Computational Linguistics |pages=5136–5150 |doi=10.18653/v1/2021.emnlp-main.417|s2cid=237497412 |doi-access=free }}</ref>
== Paraphrase recognition ==
=== Recursive
Paraphrase recognition has been attempted by Socher et al<ref name=Socher>{{Citation |last1=Socher |first1=Richard |last2=Huang |first2=Eric |last3=Pennington |first3=Jeffrey |last4=Ng |first4=Andrew |last5=Manning |first5=Christopher |title=Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection |chapter=Advances in Neural Information Processing Systems 24 |year=2011 |chapter-url=http://www.socher.org/index.php/Main/DynamicPoolingAndUnfoldingRecursiveAutoencodersForParaphraseDetection |access-date=2017-12-29 |archive-date=2018-01-06 |archive-url=https://web.archive.org/web/20180106173348/http://www.socher.org/index.php/Main/DynamicPoolingAndUnfoldingRecursiveAutoencodersForParaphraseDetection |url-status=dead }}</ref> through the use of recursive [[autoencoder]]s. The main concept is to produce a vector representation of a sentence
Given a sentence <math>W</math> with <math>m</math> words, the autoencoder is designed to take 2 <math>n</math>-dimensional [[word embedding]]s as input and produce an <math>n</math>-dimensional vector as output. The same autoencoder is applied to every pair of words in <math>S</math> to produce <math>\lfloor m/2 \rfloor</math> vectors. The autoencoder is then applied recursively with the new vectors as inputs until a single vector is produced. Given an odd number of inputs, the first vector is forwarded as
Given two sentences <math>W_1</math> and <math>W_2</math> of length 4 and 3 respectively, the autoencoders would produce 7 and 5 vector representations including the initial word embeddings. The [[euclidean distance]] is then taken between every combination of vectors in <math>W_1</math> and <math>W_2</math> to produce a similarity matrix <math>S \in \mathbb{R}^{7 \times 5}</math>. <math>S</math> is then subject to a dynamic min-[[
=== Skip-thought vectors ===
Skip-thought vectors are an attempt to create a vector representation of the semantic meaning of a sentence,
Since paraphrases carry the same semantic meaning between one another, they should have similar skip-thought vectors. Thus a simple [[logistic regression]] can be trained to
=== Transformers ===
▲Since paraphrases carry the same semantic meaning between one another, they should have similar skip-thought vectors. Thus a simple [[logistic regression]] can be trained to a good performance with the absolute difference and component-wise product of two skip-thought vectors as input.
Similar to how [[Transformer (machine learning model)|Transformer models]] influenced paraphrase generation, their application in identifying paraphrases showed great success. Models such as BERT can be adapted with a [[binary classification]] layer and trained end-to-end on identification tasks.<ref>{{Cite journal |last1=Devlin |first1=Jacob |last2=Chang |first2=Ming-Wei |last3=Lee |first3=Kenton |last4=Toutanova |first4=Kristina |title=Proceedings of the 2019 Conference of the North |date=2019 |url=http://aclweb.org/anthology/N19-1423 |language=en |___location=Minneapolis, Minnesota |publisher=Association for Computational Linguistics |pages=4171–4186 |doi=10.18653/v1/N19-1423|s2cid=52967399 |url-access=subscription |doi-access=free }}</ref><ref>{{Citation |last1=Wahle |first1=Jan Philip |title=Identifying Machine-Paraphrased Plagiarism |date=2022 |url=https://link.springer.com/10.1007/978-3-030-96957-8_34 |work=Information for a Better World: Shaping the Global Future |volume=13192 |pages=393–413 |editor-last=Smits |editor-first=Malte |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-96957-8_34 |isbn=978-3-030-96956-1 |access-date=2022-10-06 |last2=Ruas |first2=Terry |last3=Foltýnek |first3=Tomáš |last4=Meuschke |first4=Norman |last5=Gipp |first5=Bela|s2cid=232307572 |arxiv=2103.11909 }}</ref> Transformers achieve strong results when transferring between domains and paraphrasing techniques compared to more traditional machine learning methods such as [[logistic regression]]. Other successful methods based on the Transformer architecture include using [[Adversarial machine learning|adversarial learning]] and [[Meta-learning (computer science)|meta-learning]].<ref>{{Cite book |last1=Nighojkar |first1=Animesh |last2=Licato |first2=John |title=Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) |chapter=Improving Paraphrase Detection with the Adversarial Paraphrasing Task |date=2021 |chapter-url=https://aclanthology.org/2021.acl-long.552 |language=en |___location=Online |publisher=Association for Computational Linguistics |pages=7106–7116 |doi=10.18653/v1/2021.acl-long.552|s2cid=235436269 |doi-access=free }}</ref><ref>{{Cite book |last1=Dopierre |first1=Thomas |last2=Gravier |first2=Christophe |last3=Logerais |first3=Wilfried |title=Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) |chapter=ProtAugment: Intent Detection Meta-Learning through Unsupervised Diverse Paraphrasing |date=2021 |chapter-url=https://aclanthology.org/2021.acl-long.191 |language=en |___location=Online |publisher=Association for Computational Linguistics |pages=2454–2466 |doi=10.18653/v1/2021.acl-long.191|s2cid=236460333 |doi-access=free }}</ref>
== Evaluation ==
The evaluation of paraphrase generation has similar difficulties as the evaluation of [[machine translation]].
Metrics specifically designed to evaluate paraphrase generation include paraphrase in n-gram change (PINC)<ref name=Chen /> and paraphrase evaluation metric (PEM)<ref name=Liu>{{cite conference|last1=Liu|first1=Chang|last2=Dahlmeier|first2=Daniel|last3=Ng|first3=Hwee Tou|title=PEM: A Paraphrase Evaluation Metric Exploiting Parallel Texts |conference=Proceedings of the 2010 Conference on Empricial Methods in Natural Language Processing |place=MIT, Massachusetts |year=2010 |pages=923–932 |url=http://www.aclweb.org/anthology/D10-1090}}</ref> along with the aforementioned ParaMetric. PINC is designed to be used
The Quora Question Pairs Dataset, which contains hundreds of thousands of duplicate questions, has become a common dataset for the evaluation of paraphrase detectors.<ref>{{cite web |title=Paraphrase Identification on Quora Question Pairs |url=https://paperswithcode.com/sota/paraphrase-identification-on-quora-question|website=Papers with Code}}</ref>
== See also ==
*
*
*
== References ==
|