Content deleted Content added
No edit summary Tags: Mobile edit Mobile web edit |
→See also: fixed Tag: possibly inaccurate edit summary |
||
(23 intermediate revisions by 20 users not shown) | |||
Line 1:
{{Short description|Operating system designed to operate on multiple systems over a network computer}}
A '''distributed operating system''' is system software over a collection of independent software, [[Computer network|networked]], [[Inter-process communication|communicating]], and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs.<ref name="Tanenbaum1993">{{cite journal |last=Tanenbaum |first=Andrew S |date=September 1993 |title=Distributed operating systems anno 1992. What have we learned so far? |journal=Distributed Systems Engineering |volume=1 |issue=1 |pages=3–10 |doi=10.1088/0967-1846/1/1/001|bibcode=1993DSE.....1....3T |doi-access=free }}</ref> Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners.<ref name="Nutt1992">{{cite book|last=Nutt|first=Gary J.|title=Centralized and Distributed Operating Systems|url=https://archive.org/details/centralizeddistr0000nutt |url-access=registration|year=1992|publisher=Prentice Hall|isbn=978-0-13-122326-4}}</ref> The first is a ubiquitous minimal [[kernel (operating system)|kernel]], or [[microkernel]], that directly controls that node's hardware. Second is a higher-level collection of ''system management components'' that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.<ref name="Gościński1991">{{cite book|last=Gościński|first=Andrzej|title=Distributed Operating Systems: The Logical Design|url=https://books.google.com/books?id=ZnYhAQAAIAAJ|year=1991|publisher=Addison-Wesley Pub. Co.|isbn=978-0-201-41704-3}}</ref>
The microkernel and the management components collection work together. They support the system's goal of integrating multiple resources and processing functionality into an efficient and stable system.<ref name="Fortier1986">{{cite book|last=Fortier|first=Paul J.|title=Design of Distributed Operating Systems: Concepts and Technology|url=https://books.google.com/books?id=F7QmAAAAMAAJ|year=1986|publisher=Intertext Publications|isbn=9780070216211}}</ref> This seamless integration of individual nodes into a global system is referred to as ''transparency'', or ''[[single system image]]''; describing the illusion provided to users of the global system's appearance as a single computational entity.<!-- is transparency required for membership in the "dos" group?-->
Line 38:
Research and experimentation efforts began in earnest in the 1970s and continued through the 1990s, with focused interest peaking in the late 1980s. A number of distributed operating systems were introduced during this period; however, very few of these implementations achieved even modest commercial success.
Fundamental and pioneering implementations of primitive distributed operating system component concepts date to the early 1950s.<ref name=dyseac>{{cite journal |last1=Leiner |first1=Alan L. |title=System Specifications for the DYSEAC |journal=Journal of the ACM |date=April 1954 |volume=1 |issue=2 |pages=57–81 |doi=10.1145/320772.320773 |s2cid=15381094 |doi-access=
In the mid-1970s, research produced important advances in distributed computing. These breakthroughs provided a solid, stable foundation for efforts that continued through the 1990s.
The accelerating proliferation of [[Multiprocessing|multi-processor]] and [[multi-core processor]] systems research led to a resurgence of the distributed OS concept.
===The DYSEAC===
One of the first efforts was the [[DYSEAC]], a general-purpose [[Synchronization (computer science)|synchronous]] computer. In one of the earliest publications of the [[Association for Computing Machinery]], in April 1954, a researcher at the [[National Bureau of Standards]]{{snd}} now the National [[nist|Institute of Standards and Technology]] ([[nist|NIST]]){{snd}} presented a detailed specification of the DYSEAC. The introduction focused upon the requirements of the intended applications, including flexible communications, but also mentioned other computers:
{{
The specification discussed the architecture of multi-computer systems, preferring peer-to-peer rather than master-slave.
{{
This is one of the earliest examples of a computer with distributed control. The [[United States Department of the Army|Dept. of the Army]] reports<ref>Martin H. Weik, "A Third Survey of Domestic Electronic Digital Computing Systems," Ballistic Research Laboratories Report No. 1115, pg. 234-5, Aberdeen Proving Ground, Maryland, March 1961</ref> certified it reliable and that it passed all acceptance tests in April 1954. It was completed and delivered on time, in May 1954. This was a "[[portable computer]]", housed in a [[Tractor-trailer#Types of trailers|tractor-trailer]], with 2 attendant vehicles and [[Refrigerator truck|6 tons of refrigeration]] capacity.
Line 84 ⟶ 82:
This [[Computer configuration|configuration]] was ideal for distributed systems. The constant-time projection through memory for storing and retrieval was inherently [[Atomic operation|atomic]] and [[Mutual exclusion|exclusive]]. The cellular memory's intrinsic distributed characteristics<!-- are these intrinsically distributed or merely abstract?--> would be invaluable. The impact on the [[User interface|user]], [[Computer hardware|hardware]]/[[Peripheral|device]], or [[Application programming interface]]s was indirect. The authors were considering distributed systems, stating:
{{
===Foundational work===
Line 186 ⟶ 184:
:* or a process must establish exclusive access to a shared resource.
Improper synchronization can lead to multiple failure modes including loss of [[ACID|atomicity, consistency, isolation and durability]], [[Deadlock (computer science)|deadlock]], [[livelock]] and loss of [[serializability]].{{Citation needed|date=January 2012}}
===Flexibility===
Line 212 ⟶ 210:
===Effective and stable in multiple levels of complexity===
:Tessellation: Space-Time Partitioning in a Manycore Client OS.<ref>Rose Liu, Kevin Klues, and Sarah Bird, University of California at Berkeley; Steven Hofmeyr, Lawrence Berkeley National Laboratory; [[Krste Asanović]] and John Kubiatowicz, University of California at Berkeley. HotPar09.</ref>
==See also==
*
* {{annotated link|HarmonyOS}}
* [[Plan 9 from Bell Labs]]▼
* {{annotated link|OpenHarmony}}
* [[Inferno (operating system)|Inferno]]▼
* {{annotated link|BlueOS}}
* [[Single system image]] (SSI)▼
* [[Computer systems architecture]]▼
* {{annotated link|MINIX}}
* [[Multikernel]]▼
* [[Operating System Projects]]▼
* [[Edsger W. Dijkstra Prize in Distributed Computing]]▼
* [[List of distributed computing conferences]]▼
* [[List of distributed computing projects]]▼
==References==
Line 252:
-->
{{Distributed operating systems}}
|