Content deleted Content added
Citation bot (talk | contribs) Alter: isbn. Add: volume, series, doi, year, s2cid, pages, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 28/176 |
m fix common MOS:REFSPACE spacing errors, replaced: /ref> <ref → /ref><ref (6) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Too many sections|date=December 2020}}
In robotics, '''Cartesian parallel manipulators''' are [[Manipulator (device)|manipulators]] that move a platform using [[Parallel manipulator|parallel]]-connected kinematic [[Linkage (mechanical)|linkages]] (
== Context ==
Generally, manipulators (also called
== Description ==
Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: [[Cartesian coordinate robot|Cartesian]] and [[Parallel manipulator|parallel]]. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the ''X, Y, Z'' position coordinates of the moving platform, making them easy to control. Furthermore, Cartesian manipulators do not change the orientation of the moving platform. Most commonly, [[Cartesian coordinate robot|Cartesian manipulators]] are [[Serial manipulator|serial]]-connected; i.e., they consist of a single [[Linkage (mechanical)|kinematic linkage]] chain, i.e. the first linear actuator moves the second one and so on. On the other hand, Cartesian parallel manipulators are parallel-connected, i.e. they consist of multiple kinematic linkages. Parallel-connected manipulators have innate advantages<ref>Z. Pandilov, V. Dukovski, Comparison of the characteristics between serial and parallel robots, Acta Technica Corviniensis-Bulletin of Engineering, Volume 7, Issue 1, Pages 143-160</ref> in terms of stiffness,<ref>{{Cite journal|last1=Geldart|first1=M|last2=Webb|first2=P|last3=Larsson|first3=H|last4=Backstrom|first4=M|last5=Gindy|first5=N|last6=Rask|first6=K|date=2003|title=A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools|url=http://dx.doi.org/10.1016/s0890-6955(03)00119-6|journal=International Journal of Machine Tools and Manufacture|volume=43|issue=11|pages=1107–1116|doi=10.1016/s0890-6955(03)00119-6|issn=0890-6955|url-access=subscription}}</ref> precision,<ref>{{Cite journal|date=1997|title=Vibration control for precision manufacturing using piezoelectric actuators|url=http://dx.doi.org/10.1016/s0141-6359(97)81235-4|journal=Precision Engineering|volume=20|issue=2|pages=151|doi=10.1016/s0141-6359(97)81235-4|issn=0141-6359|url-access=subscription}}</ref> dynamic performance<ref>R. Clavel, inventor, S.A. SovevaSwitzerland, assignee. Device for the movement and positioning of an element in space, USA patent number, 4,976,582 (1990)</ref>
Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02
Line 16:
=== Multipteron family ===
Members of the Multipteron <ref>{{Cite
==== Tripteron ====
[[File:Tripteron robot.jpg|thumb|Tripteron]]
The 3-DoF Tripteron<ref>Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202</ref>
==== Qudrupteron ====
[[File:Quadrupteron robot.jpg|thumb|Quadrupteron]]
The 4-DoF Qudrupteron<ref>{{Cite journal|last=Gosselin|first=C|date=2009-01-06|title=Compact dynamic models for the tripteron and quadrupteron parallel manipulators|url=http://dx.doi.org/10.1243/09596518jsce605|journal=Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering|volume=223|issue=1|pages=1–12|doi=10.1243/09596518jsce605|s2cid=61817314|issn=0959-6518|url-access=subscription}}</ref> has ''3T1R'' DoF with (''3<u>P</u>RRU)(<u>P</u>RRR)'' joint topology.
==== Pentapteron ====
The 5-DoF Pentateron<ref>{{Cite
==== Hexapteron ====
The 6-DoF Hexapteron<ref>{{Cite
=== Isoglide ===
The Isoglide family<ref>{{Cite journal|last=Gogu|first=Grigore|date=2004|title=Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations|url=http://dx.doi.org/10.1016/j.euromechsol.2004.08.006|journal=European Journal of Mechanics - A/Solids|volume=23|issue=6|pages=1021–1039|doi=10.1016/j.euromechsol.2004.08.006|bibcode=2004EJMS...23.1021G |issn=0997-7538|url-access=subscription}}</ref>
=== Xactuator ===
|