Content deleted Content added
Citation needed. See talk page. |
m Moving Category:Algorithms in graph theory to Category:Graph algorithms per Wikipedia:Categories for discussion/Log/2024 October 4 |
||
(9 intermediate revisions by 7 users not shown) | |||
Line 10:
* no arcs include points associated with other vertices,
* two arcs never intersect at a point which is interior to either of the arcs.
Here a surface is a
Informally, an embedding of a graph into a surface is a drawing of the graph on the surface in such a way that its edges may intersect only at their endpoints. It is well known that any finite graph can be embedded in 3-dimensional Euclidean space <math>\mathbb{R}^3</math>.<ref name="3d-gd">{{citation
Line 40:
the vertices and edges of <math>G</math> is a family of '''regions''' (or '''[[face (graph theory)|face]]s''').<ref name="gt01">{{citation|last1=Gross|first1=Jonathan|last2=Tucker|first2=Thomas W.|authorlink2= Thomas W. Tucker| title=Topological Graph Theory|publisher=Dover Publications|year=2001|isbn=978-0-486-41741-7}}.</ref> A '''2-cell embedding''', '''cellular embedding''' or '''map''' is an embedding in which every face is homeomorphic to an open disk.<ref>{{citation|last1=Lando|first1=Sergei K.|last2=Zvonkin|first2=Alexander K.|title=Graphs on Surfaces and their Applications|publisher=Springer-Verlag|year=2004|isbn=978-3-540-00203-1}}.</ref> A '''closed 2-cell embedding''' is an embedding in which the closure of every face is homeomorphic to a closed disk.
The '''genus''' of a [[Graph (discrete mathematics)|graph]] is the minimal integer <math>n</math> such that the graph can be embedded in a surface of [[Genus (mathematics)|genus]] <math>n</math>. In particular, a [[planar graph]] has genus <math>0</math>, because it can be drawn on a sphere without self-crossing. A graph that can be embedded on a [[torus]] is called a [[toroidal graph]].
The '''non-orientable genus''' of a [[Graph (discrete mathematics)|graph]] is the minimal integer <math>n</math> such that the graph can be embedded in a non-orientable surface of (non-orientable) genus <math>n</math>.<ref name="gt01"/> The '''Euler genus''' of a graph is the minimal integer <math>n</math> such that the graph can be embedded in an orientable surface of (orientable) genus <math>n/2</math> or in a non-orientable surface of (non-orientable) genus <math>n</math>. A graph is '''orientably simple''' if its Euler genus is smaller than its non-orientable genus.
Line 48 ⟶ 50:
==Combinatorial embedding==
{{main|Rotation system}}
An embedded graph uniquely defines [[cyclic order
An embedded graph also defines natural cyclic orders of edges which constitutes the boundaries of the faces of the embedding. However handling these face-based orders is less straightforward, since in some cases some edges may be traversed twice along a face boundary. For example this is always the case for embeddings of trees, which have a single face. To overcome this combinatorial nuisance, one may consider that every edge is "split" lengthwise in two "half-edges", or "sides". Under this convention in all face boundary traversals each half-edge is traversed only once and the two half-edges of the same edge are always traversed in opposite directions.
Line 56 ⟶ 58:
==Computational complexity==
The problem of finding the graph genus is [[NP-hard]] (the problem of determining whether an <math>n</math>-vertex graph has genus <math>g</math> is [[NP-complete]]).<ref>{{Citation | last1=Thomassen | first1=Carsten | authorlink = Carsten Thomassen (mathematician) | title=The graph genus problem is NP-complete | year=1989 | journal=Journal of Algorithms | volume=10 | issue = 4 | pages=568–576 | doi = 10.1016/0196-6774(89)90006-0}}</ref>
At the same time, the graph genus problem is [[Fixed-parameter tractability|fixed-parameter tractable]], i.e., [[polynomial time]] algorithms are known to check whether a graph can be embedded into a surface of a given fixed genus as well as to find the embedding.
The first breakthrough in this respect happened in 1979, when algorithms of [[time complexity]]
''O''(''n''<sup>''O''(''g'')</sup>) were independently submitted to the Annual [[ACM Symposium on Theory of Computing]]: one by I. Filotti and [[Gary Miller (computer scientist)|G.L. Miller]] and another one by [[John Reif]]. Their approaches were quite different, but upon the suggestion of the program committee they presented a joint paper.<ref>{{citation|first1=I. S.|last1=Filotti|author2-link=Gary Miller (computer scientist)|first2=Gary L.|last2=Miller|first3=John|last3=Reif|author3-link=John Reif |title=Proc. 11th Annu. ACM Symposium on Theory of Computing|year=1979|pages=27–37|doi=10.1145/800135.804395|chapter=On determining the genus of a graph in O(v O(g)) steps(Preliminary Report)|title-link=Symposium on Theory of Computing|doi-access=free}}.</ref> However, [[Wendy Myrvold]] and [[William Lawrence Kocay|William Kocay]] proved in 2011 that the algorithm given by Filotti, Miller and Reif was incorrect.<ref>{{cite journal|last1=Myrvold|first1=Wendy|author1-link=Wendy Myrvold|last2=Kocay|first2=William|author2-link=William Lawrence Kocay|title=Errors in Graph Embedding Algorithms|journal=Journal of Computer and System Sciences|date=March 1, 2011|volume=2|issue=77|
In 1999 it was reported that the fixed-genus case can be solved in time [[linear time|linear]] in the graph size and [[Double exponential function|doubly exponential]] in the genus.<ref>{{Citation | last1=Mohar | first1=Bojan | authorlink = Bojan Mohar | title=A linear time algorithm for embedding graphs in an arbitrary surface | year=1999 | journal=[[SIAM Journal on Discrete Mathematics]] | volume=12 | issue=1 | pages=6–26 | doi = 10.1137/S089548019529248X| citeseerx=10.1.1.97.9588 }}</ref>
|