Schwarz triangle function: Difference between revisions

Content deleted Content added
clarify and corrections
 
(35 intermediate revisions by 5 users not shown)
Line 1:
{{short description|Conformal mappings in complex analysis}}
 
<noinclude>{{User:RMCD bot/subject notice|1=Schwarz triangle function|2=Talk:Schwarz triangle tessellation#Requested move 15 August 2022}}
</noinclude>
[[File:Schwarz triangle function.svg|thumb|The upper half-plane, and the image of the upper half-plane transformed by the Schwarz triangle function with various parameters.]]
{{Complex analysis sidebar}}
In [[complex analysis]], the '''Schwarz triangle function''' or '''Schwarz s-function''' is a function that [[conformal mapping|conformally maps]] the [[upper half plane]] to a triangle in the upper half plane having lines or circular arcs for edges. The target triangle is not necessarily a [[Schwarz triangle]], although that case is the most mathematically interesting case. When that triangle is a non-overlapping Schwarz triangle, i.e. a [[Möbius triangle]], the inverse of the Schwarz triangle function is a [[single-valued]] [[automorphic function]] for that triangle's [[triangle group]]. More specifically, it is a [[modular function]].
 
Through the theory of complex [[ordinary differential equation]]s with [[regular singular point]]s and the [[Schwarzian derivative]], the triangle function can be expressed as the quotient of two solutions of a [[hypergeometric differential equation]] with real coefficients and singular points at 0, 1 and ∞. By the [[Schwarz reflection principle]], the reflection group induces an action on the two dimensional space of solutions. On the orientation-preserving normal subgroup, this two-dimensional representation corresponds to the [[monodromy]] of the ordinary differential equation and induces a group of [[Möbius transformation]]s on quotients of [[hypergeometric function]]s.
 
==Formula==
Let ''πα'', ''πβ'', and ''πγ'' be the interior angles at the vertices of the triangle (in [[radians]]):. followingEach of ''α'', ''β'', and ''γ'' may take values between 0 and 1 inclusive. Following Nehari,{{sfn|Nehari|1975|page=309}} thisthese angles are in clockwise order., Ifwith anythe ofvertex having angle ''α, βπα'', at the origin and the vertex having angle ''γπγ'' arelying greateron thanthe zero,real thenline. theThe Schwarz triangle function can be given in terms of [[hypergeometric functions]] as:
 
:<math>s(\alpha, \beta, \gamma; z) = z^{\alpha} \frac{_2 F_1 \left(a', b'; c'; z\right)}{_2 F_1 \left(a, b; c; z\right)}</math>
where
:''a'' = (1−α−β−γ)/2,
Line 19 ⟶ 16:
:''b''′ = ''b'' − ''c'' + 1 = (1+α+β−γ)/2, and
:''c''′ = 2 − ''c'' = 1 + α.
This formula can be derived using the [[Schwarzian derivative]].
 
This function maps the upper half-plane to a [[spherical triangle]] if α + β + γ > 1, or a [[hyperbolic triangle]] if α + β + γ < 1. When α + β + γ = 1, then the triangle is a Euclidean triangle with straight edges: ''a''&thinsp;=&thinsp;0, <math>_2 F_1 \left(a, b; c; z\right) = 1</math>, and the formula reduces to that given by the [[Schwarz–Christoffel transformation]]. In the special case of [[ideal triangle]]s, where all the angles are zero, the triangle function yields the [[modular lambda function]].
 
===Derivation===
Through the theory of complex [[ordinary differential equation]]s with [[regular singular point]]s and the [[Schwarzian derivative]], the triangle function can be expressed as the quotient of two solutions of a [[hypergeometric differential equation]] with real coefficients and singular points at 0, 1 and ∞. By the [[Schwarz reflection principle]], the reflection group induces an action on the two dimensional space of solutions. On the orientation-preserving normal subgroup, this two-dimensional representation corresponds to the [[monodromy]] of the ordinary differential equation and induces a group of [[Möbius transformation]]s on quotients of [[hypergeometric function]]s.{{sfn|Nehari|1975|pp=198-208}}
 
== Singular points ==
This mapping has [[regular singular points]] at ''z'' = 0, 1, and ∞, corresponding to the vertices of the triangle with angles πα, πγ, and πβ respectively. At these singular points,{{sfn|Nehari|1975|pages=315−316}}
:<math>s(0) = 0</math>, \begin{align}
:<math>s(10) &= 0, \\frac[4mu]
s(1) &= \frac
{\Gamma(1-a')\Gamma(1-b')\Gamma(c')}
{\Gamma(1-a)\Gamma(1-b)\Gamma(c)}</math>, and \\[8mu]
:<math>s(\infty) &= \exp\left(i \pi \alpha \right)\frac
{\Gamma(1-a')\Gamma(b)\Gamma(c')}
{\Gamma(1-a)\Gamma(b')\Gamma(c)}</math>,
\end{align}</math>
 
where Γ<math display=inline>\Gamma(x)</math> is the [[Gammagamma function]].
 
Near each singular point, the function may be approximated as so, using [[Big O notation]].
 
:<math>s_0(z)=z^\alpha (1+O(z))</math>,begin{align}
:<math>s_1s_0(z) &=(1- z)^\gammaalpha (1+O(1-z))</math>, and\\[6mu]
:<math>s_\inftys_1(z) &= (1-z)^\betagamma (1+O(\tfrac{1}{-z}))</math>., \\[6mu]
s_\infty(z) &= z^\beta (1+O(1/z)),
\end{align}</math>
 
where <math>O(x)</math> is [[big O notation]].
 
== Inverse ==
When ''α, β'', and ''γ'' are rational, the triangle is a Schwarz triangle. When each of ''α, β'', and ''γ'' are either the reciprocal of an integer or zero, the triangle is a [[Möbius triangle]], i.e. a non-overlapping Schwarz triangle. For a Möbius triangle, the inverse is a [[modular function]].
The inverse function is an [[automorphic function]] for this discrete group of Möbius transformations. This is a special case of a general scheme of [[Henri Poincaré]] that associates automorphic forms with ordinary differential equations with regular singular points.
 
In the spherical case, that modular function is a [[rational function]]. For Euclidean triangles, the inverse can be expressed using [[elliptical function]]s.<ref name=Lee />
 
== Ideal triangles ==
When ''α'' = 0 the triangle is degenerate, lying entirely on the real line. If either of ''β'' or ''γ'' are non-zero, the angles can be permuted so that the positive value is ''α'', but that is not an option for an [[ideal triangle]] having all angles zero.
 
Instead, a mapping to an ideal triangle with vertices at 0, 1, and ∞ is given by in terms of the [[complete elliptic integral of the first kind]]:
When ''α, β'', and ''γ'' are rational, the triangle is a Schwarz triangle. When each of ''α, β'', and ''γ'' are either the reciprocal of an integer or zero, the triangle is a [[Möbius triangle]], i.e. a non-overlapping Schwarz triangle. When the target triangle is a Möbius triangle, the inverse can be expressed as:
:<math>i\frac{K(1-z)}{K(z)}</math>.
* Spherical: [[rational function]]
This expression is the inverse of the [[modular lambda function]].{{sfn|Nehari|1975|pp=316-318}}
* Euclidean: [[elliptical function]]
* Hyperbolic: [[modular function]]
 
== Extensions ==
The [[Schwarz–Christoffel transformation]] gives the mapping from the upper half-plane to any Euclidean polygon.
 
The methodology used to derive the Schwarz triangle function earlier can be applied more generally to arc-edged polygons. However, for an ''n''-sided polygon, the solution has ''n-3'' − 3 additional parameters, which are difficult to determine in practice.{{sfn|Nehari|1975|p=202}} See {{slink|Schwarzian derivative#Conformal mapping of circular arc polygons}} for more details.
 
== Applications ==
[[L. P. Lee]] used Schwarz triangle functions to derive [[polyhedralconformal map projection]]s that were alsoonto [[conformalpolyhedral map projection|conformalpolyhedral]] surfaces.<ref name=Lee>{{cite book | last = Lee | first = L. P. | author-link = Laurence Patrick Lee | year = 1976 | title = Conformal Projections basedBased on Elliptic Functions |year ___location =1976 Toronto | publisher =University ofB. TorontoV. PressGutsell, York University | series = Cartographica Monographs | volume = 16 | url = https://archive.org/details/conformalproject0000leel | url-access = limited | isbn = 0-919870-16-3}} Supplement No. 1 to [https://www.utpjournals.press/toc/cart/13/1 ''The Canadian Cartographer'' '''13'''].</ref>
|isbn=9780919870161 |url=https://archive.org/details/conformalproject0000leel |url-access=limited }} Chapters also published in [https://www.utpjournals.press/toc/cart/13/1 ''The Canadian Cartographer''. '''13''' (1). 1976.]</ref>
 
==References==
{{reflist|20em30em}}
 
==Sources==
{{refbegin|colwidth=30em}}
* {{Cite book |last=Ahlfors |first=Lars V. |author-link=Lars Ahlfors |title=Complex analysis: an introduction to the theory of analytic functions of one complex variable |date=1979 |publisher=McGraw-Hill |isbn=0-07-000657-1 |edition=3 |___location=New York |oclc=4036464}}
* {{cite book|mr = 2439729 | last1= Abramenko| first1 =Peter |last2 =Brown|first2 =Kenneth S.| author2-link= Kenneth S. Brown| title=Buildings: Theory and Applications|series= Graduate Texts in Mathematics|volume= 248| publisher = [[Springer-Verlag]]| year= 2007 | isbn = 978-0-387-78834-0}}
* {{cite book |last=Carathéodory |first=Constantin |author-link=Constantin Carathéodory |title=Theory of functions of a complex variable |volume=2 |translator=F. Steinhardt |publisher=Chelsea |year=1954|url=https://books.google.com/books?id=UTTvAAAAMAAJ|oclc=926250115}}
* {{citation |last=Ahlfors |first=Lars V. |author-link=Lars Ahlfors |title=Complex Analysis |publisher=McGraw Hill |year=1966 |edition=2nd }}
* {{citationCite book |last=BeardonHille |first=AlanEinar F.| author-link =Einar Alan Frank BeardonHille |title=TheOrdinary Geometrydifferential ofequations Discretein Groupsthe |series=Graduatecomplex Texts in Mathematics___domain |volumedate=911997 |publisher=SpringerDover |year=1983Publications |isbn=0-387486-9078869620-20 |pages ___location=Mineola, N.Y. 242–252| chapter oclc= Poincaré's Theorem36225146}}
* {{citationCite book |last=BeardonNehari |first=Alan F.Zeev |author-link =Zeev Alan Frank BeardonNehari |title=AConformal primer on Riemann surfaces |journal=London Mathematical Society Lecture Note Seriesmapping |volumedate=781975 |publisher=CambridgeDover University Press |year=1984Publications |isbn=05212710450-486-61137-X |url-access___location=registrationNew York |urloclc=https://archive.org/details/primeronriemanns0000bear 1504503}}
* {{citationcite book |lastlast1=BergerSansone |firstfirst1=MarcelGiovanni |author-link=MarcelGiovanni BergerSansone |last2=Gerretsen |first2=Johan |title=GeometryLectures revealed.on Athe Jacob'stheory ladderof tofunctions modernof highera geometrycomplex |translator=Lestervariable. SenechalII: Geometric theory |publisher=SpringerWolters-Noordhoff |year=20101969 |isbnoclc=978-3-540-70996-1 245996162}}
* {{citation |last1=Berndt |first1=Bruce C. |author-link=Bruce C. Berndt |last2=Knopp |first2=Marvin I. |author-link2=Marvin Knopp |title=Hecke's theory of modular forms and Dirichlet series |series=Monographs in Number Theory |volume=5 |publisher=World Scientific |year=2008 |isbn=978-981-270-635-5 }}
* {{cite book | mr =2133266 |last1= Björner| first1= Anders| author1-link= Anders Björner |
last2= Brenti| first2= Francesco | title=Combinatorics of Coxeter groups| series= Graduate Texts in Mathematics| volume= 231| publisher=[[Springer-Verlag]]| year= 2005 | isbn = 978-3540-442387}}
* {{cite book| mr =1482800 | last = Borel | first = Armand | author-link = Armand Borel | title = Automorphic forms on SL<sub>2</sub>(R) | series = Cambridge Tracts in Mathematics | volume = 130
| publisher = [[Cambridge University Press]] | year = 1997 | isbn = 0-521-58049-8 | url = https://www.cambridge.org/core/books/automorphic-forms-on-sl2-r/20CDEAD276B61040B2B9013A21ACC145
|chapter= I. Basic material on SL<sub>2</sub>(R), discrete subgroups, and the upper half-plane}}
* {{cite book| mr =0240238|last=Bourbaki|first= Nicolas|author-link= Nicolas Bourbaki |series=Éléments de mathématique |title=Groupes et algèbres de Lie|chapter= Chapitre IV : Groupes de Coxeter et systèmes de Tits • Chapitre V : Groupes engendrés par des réflexions|publisher= Hermann|___location= Paris|year = 1968 | pages =1–56, 57–141 | lang = fr}} Reprinted by Masson in 1981 as {{isbn|2-225-76076-4}}.
* {{cite book |mr =1744486 | last1=Bridson| first1= Martin R.|author1-link= Martin Bridson|last2= Haefliger| first2 = André | author2-link = André Haefliger | title = Metric spaces of non-positive curvature | series =Grundlehren der mathematischen Wissenschaften | volume = 319| publisher = [[Springer-Verlag]] | year = 1999
| isbn = 3-540-64324-9 | url = https://www.math.bgu.ac.il/~barakw/rigidity/bh.pdf |chapter =I. Basic material on SL<sub>2</sub>(R), discrete subgroups, and the upper half-plane}}
* {{cite book|mr = 0969123 | last = Brown | first = Kenneth S. | author-link = Kenneth S. Brown| title=Buildings| publisher = [[Springer-Verlag]] | year = 1989 | isbn = 0-387-96876-8 }}
* {{citation |last=Busemann |first=Herbert |author-link=Herbert Busemann |title=The geometry of geodesics |publisher=Academic Press |year=1955 }}
* {{citation |last=Carathéodory |first=Constantin |author-link=Constantin Carathéodory |title=Theory of functions of a complex variable |volume=2 |translator=F. Steinhardt |publisher=Chelsea |year=1954}}
* {{citation |last=Chandrasekharan |first=K. |author-link=K. S. Chandrasekharan |title=Elliptic functions |series=Grundlehren der Mathematischen Wissenschaften |volume=281 |publisher=Springer |year=1985 |isbn=3-540-15295-4 }}
* {{citation |last=Davis |first=Michael W. |title=The geometry and topology of Coxeter groups |series=London Mathematical Society Monographs |volume=32 |publisher=[[Princeton University Press]] |year=2008 |isbn=978-0-691-13138-2| chapter=Appendix D. The Geometric Representation| pages = 439–447 }}
* {{cite book|mr=1170367| last=de la Harpe|first= Pierre | chapter=An invitation to Coxeter groups|title= Group theory from a geometrical viewpoint (Trieste, 1990)|pages= 193–253|publisher= [[World Scientific]] |year= 1991}}
* {{cite journal| mr =0647210 |last=Deodhar | first= Vinay V. | author-link= Vinay Deodhar| title = On the root system of a Coxeter group |journal = [[Comm. Algebra]]| volume = 10 | year =1982 |issue=6 | pages = 611–630 |
doi=10.1080/00927878208822738}}
* {{cite journal| url = https://www.e-periodica.ch/cntmng?var=true&pid=ens-001:1986:32::54| last=Deodhar | first= Vinay V. | author-link= Vinay Deodhar| journal = [[Enseign. Math.]] | mr = 0850554 | title=Some characterizations of Coxeter groups | volume = 32 | year =1986 | pages = 111–120 }}
* {{cite journal|last=de Rham|first= G.|author-link=Georges de Rham|title= Sur les polygones générateurs de groupes fuchsiens| lang=fr |journal= [[Enseign. Math.]]|volume= 17 |year =1971|pages= 49–61|url= https://www.e-periodica.ch/cntmng?pid=ens-001%3A1971%3A17%3A%3A33}}
* {{cite book | last = Ellis | first = Graham | chapter = Triangle groups | isbn = 978-0-19-883298-0 | mr = 3971587 | pages = 441–444 | publisher = [[Oxford University Press]] | title = An Invitation to Computational Homotopy | year = 2019}}
* {{cite journal|mr = 1279064|last1=Epstein|first1= David B. A.|author1-link=David B. A. Epstein|last2= Petronio|first2= Carlo |title=An exposition of Poincaré's polyhedron theorem|journal=[[Enseign. Math.]]|volume= 40 | year= 1994|pages= 113–170|url= https://www.e-periodica.ch/cntmng?pid=ens-001%3A1994%3A40%3A%3A49}}
* {{citation |last=Evans |first=Ronald |title=A fundamental region for Hecke's modular group |journal=[[Journal of Number Theory]] |volume=5 |year=1973 |issue=2 |pages=108–115 |doi=10.1016/0022-314x(73)90063-2 |bibcode=1973JNT.....5..108E |doi-access=free }}
* {{citation |last1=Fricke |first1=Robert |author-link1=Robert Fricke|last2=Klein |first2=Felix |author-link2=Felix Klein |date=1897 |title=Vorlesungen über die Theorie der automorphen Functionen. Erster Band; Die gruppentheoretischen Grundlagen |url=https://archive.org/details/vorlesungenber01fricuoft |publisher=B. G. Teubner |language=de |isbn=978-1-4297-0551-6 |jfm=28.0334.01 }}
* {{citation |last1=Graham |first1=Ronald L. |author-link=Ronald Graham (mathematician) |last2=Knuth |first2=Donald E. |author-link2=Donald Knuth |last3=Patashnik |first3=Oren |author-link3=Oren Patashnik |year=1994 |title=Concrete mathematics |edition=2nd |publisher=Addison-Wesley |isbn=0-201-55802-5 |pages=116–118 }}
* {{citation |last1=Hardy |first1=G. H. |author-link=G. H. Hardy |last2=Wright |first2=E. M. |author-link2=E. M. Wright |title=An introduction to the theory of numbers |edition=6th |publisher=Oxford University Press |year=2008 |isbn=978-0-19-921986-5 }}
* {{cite book |first=Allen |last=Hatcher |author-link=Allen Hatcher |title=Topology of Numbers |publisher=[[Cornell University]] |year=2013 |url=https://pi.math.cornell.edu/~hatcher/TN/TNbook.pdf
|access-date=25 February 2022|chapter= 1. The Farey Diagram }}
* {{citation |title=Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung |language=de |last=Hecke |first=E. |author-link=Erich Hecke |journal=[[Mathematische Annalen]] |volume=112 |year=1935 |pages=664–699 |doi=10.1007/bf01565437 |doi-access=free }}
* {{cite web|last=Heckman| first= Gert J. |title = Coxeter Groups| year=2018|access-date= 3 March 2022| url = https://www.math.ru.nl/~heckman/CoxeterGroups.pdf | work= [[Radboud University Nijmegen]]}}
*{{citation|first=Sigurdur|last=Helgason| author-link= Sigurður Helgason (mathematician)| title=Differential geometry, Lie groups and symmetric spaces|year=1978|publisher=Academic Press|isbn=0-12-338460-5}}
* {{citation |last=Helgason |first=Sigurdur |author-link=Sigurdur Helgason (mathematician) |title=Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions |series=Mathematical Surveys and Monographs |volume=83 |publisher=American Mathematical Society |year=2000 |isbn=0-8218-2673-5 }}
* {{citation |last=Hille |first=Einar |author-link=Einar Hille |title=Ordinary differential equations in the complex ___domain |publisher=Wiley-Interscience |year=1976 }}
* {{cite book|mr = 0649068| last= Hiller | first = Howard | title= Geometry of Coxeter groups| series=Research Notes in Mathematics| volume = 54 | publisher= Pitman | year = 1982 |isbn = 0-273-08517-4 }}
* {{cite book|first=Robert | last = Howlett| author-link= Robert Howlett| chapter= Introduction to Coxeter Groups| year= 1996 | chapter-url = https://www.maths.usyd.edu.au/u/ResearchReports/Algebra/How/1997-6.html |
title = Australian National University Geometric Group Theory Workshop|___location= [[Sydney]] }}
* {{cite book|mr =1066460 |last=Humphreys|first= James E. | author-link =James E. Humphreys| title = Reflection groups and Coxeter groups| series = Cambridge Studies in Advanced Mathematics| volume = 29| publisher = [[Cambridge University Press]]| year = 1990| isbn = 0-521-37510-X}}
* {{citation |last=Ince |first=E. L. |author-link=E. L. Ince |title=Ordinary Differential Equations |publisher=Dover |year=1944 }}
* {{citation |last=Iversen |first=Birger |title=Hyperbolic geometry |series=London Mathematical Society Student Texts |volume=25 |publisher=Cambridge University Press |year=1992 |isbn=0-521-43508-0 }}
* {{cite book| mr = 0217741 | last =Iwahori | first= Nagayoshi| author-link= Nagayoshi Iwahori|chapter =On discrete reflection groups on symmetric Riemannian manifolds| year = 1966| title= Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965)| pages = 57–62| publisher = Nippon Hyoronsha| ___location= Tokyo}}
* {{cite book| mr = 3839612 | last =Johnson | first = Norman W. | title = Geometries and Transformations |
publisher = [[Cambridge University Press]]| year = 2018 | isbn = 978-1-107-10340-5 |
url = https://www.cambridge.org/core/books/geometries-and-transformations/94D1016D7AC64037B39440729CE815AB }}
* {{citation |last=Magnus |first=Wilhelm |author-link=Wilhelm Magnus |title=Noneuclidean tesselations and their groups |series=Pure and Applied Mathematics |volume=61 |publisher=Academic Press |year=1974|url=
https://www.sciencedirect.com/bookseries/pure-and-applied-mathematics/vol/61/suppl/C}}
* {{cite book| mr = 0207802 | last1 = Magnus| first1 = Wilhelm| author1-link= Wilhelm Magnus| last2= Karrass| first2 = Abraham| last3 = Solitar | first3= Donald | author3-link = Donald Solitar | title=Combinatorial group theory: Presentations of groups in terms of generators and relations| year =1976|
publisher= [[Dover Books]]| edition= Second revised}}
* {{citation |last=Maskit |first=Bernard |author-link=Bernard Maskit |title=On Poincaré's theorem for fundamental polygons |journal=[[Advances in Mathematics]] |volume=7 |pages=219–230 |year=1971 |issue=3 |doi=10.1016/s0001-8708(71)80003-8 |doi-access=free }}
* {{cite book | mr = 0959135 | last = Maskit| first = Bernard | author-link = Bernard Maskit| title=Kleinian groups| series = Grundlehren der mathematischen Wissenschaften | volume = 287| publisher= [[Springer-Verlag]] | year = 1988 | isbn = 3-540-17746-9| chapter = Poincaré's theorem}}
* {{cite journal| mr = 0679972 | last=Maxwell | first =George|
title = Sphere packings and hyperbolic reflection groups | journal = [[J. Algebra]]| volume = 79 | year=1982 | pages = 78–97| doi=10.1016/0021-8693(82)90318-0 }}
* {{citation |last=McMullen |first=Curtis T. |author-link=Curtis McMullen |title=Hausdorff dimension and conformal dynamics. III. Computation of dimension |journal=American Journal of Mathematics |volume=120 |year=1998 |pages=691–721 |doi=10.1353/ajm.1998.0031 |s2cid=15928775 }}
* {{cite journal|mr =0183818 | last= Matsumoto | first= Hideya| author-link= Hideya Matsumoto| title=Générateurs et relations des groupes de Weyl généralisés|lang = fr|journal=[[C. R. Acad. Sci. Paris]]|volume= 258 |year =1964 | pages= 3419–3422 | url= https://gallica.bnf.fr/ark:/12148/bpt6k4011c/f1029.item}}
* {{cite book|mr=0418127|last= Milnor| first = John| author-link= John Milnor| chapter = On the 3-dimensional Brieskorn manifolds M(p,q,r)| title= Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox)|pages= 175–225|series= Ann. of Math. Studies| volume =84| publisher= [[Princeton University Press]] | year = 1975}}
* {{citation |last1=Mumford |first1=David |author-link1=David Mumford |last2=Series |first2=Caroline |author-link2=Caroline Series |last3=Wright |first3=David |date=2015 |title=Indra's pearls. The vision of Felix Klein |publisher=Cambridge University Press |isbn=978-1-107-56474-9 }}
* {{citation |last=Nehari |first=Zeev |author-link=Zeev Nehari |title=Conformal mapping |publisher=Dover |year=1975 }}
* {{cite book| mr = 1299730| last = Ratcliffe |first = John G. | title =Foundations of hyperbolic manifolds| edition = Third| series = Graduate Texts in Mathematics | volume = 149
| publisher = Springer| year = 2019 | isbn = 978-3-030-31597-9}}
* {{cite book|mr = 3186310 |last= Schlag| first= Wilhelm |author-link = Wilhelm Schlag|title=A course in complex analysis and Riemann surfaces| series= Graduate Studies in Mathematics| volume = 154|
publisher = [[American Mathematical Society]] | year= 2014 |isbn= 978-0-8218-9847-5|chapter= Uniformization
|pages = 305–351}}
* {{citation |last=Series |first=Caroline |author-link=Caroline Series |title=Continued fractions and hyperbolic geometry, Loughborough LMS Summer School |year=2015 |url=http://homepages.warwick.ac.uk/~masbb/HypGeomandCntdFractions-2.pdf |access-date=15 February 2017}}
* {{citation |last=Siegel| first=C. L. |author-link=Carl Ludwig Siegel |title=Topics in complex function theory |volume=II. Automorphic functions and abelian integrals |translator1=A. Shenitzer |translator2=M. Tretkoff |publisher=Wiley-Interscience |year=1971 |isbn=0-471-60843-2 |pages=85–87 }}
* {{cite book| mr = 0230728 | last= Steinberg | first = Robert | author-link = Robert Steinberg | title= Endomorphisms of linear algebraic groups | series = [[Memoirs of the American Mathematical Society]]| volume= 80 | publisher= [[American Mathematical Society]] | year = 1968 | url = https://bookstore.ams.org/memo-1-80/9}}
* {{cite book |mr = 1333415 | last = Szenthe| first= J. | chapter= A significant property of real hyperbolic spaces| title= Proceedings of Symposium in Geometry (Cluj-Napoca and Tîrgu Mureş, 1992)| pages= 153–161| year = 1993}}
* {{citation |last=Takeuchi |first=Kisao |title=Arithmetic triangle groups |journal=Journal of the Mathematical Society of Japan |volume=29 |year=1977a |pages=91–106 |doi=10.2969/jmsj/02910091 |doi-access=free }}
* {{citation |last=Takeuchi |first=Kisao |title=Commensurability classes of arithmetic triangle groups |journal=Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics |volume=24 |year=1977b |pages=201–212 }}
* {{citation |last=Threlfall |first=W. |author-link=William Threlfall |url=http://digital.slub-dresden.de/fileadmin/data/304910686/304910686_tif/jpegs/304910686.pdf |title=Gruppenbilder |journal=Abhandlungen der Mathematisch-physischen Klasse der Sachsischen Akademie der Wissenschaften |volume=41 |pages=1–59 |publisher=Hirzel |year=1932 }}
* {{cite book|last=Tits|first= Jacques |author-link = Jacques Tits |title= Œuvres/Collected works, Volume I|lang=fr |editor1 = F. Buekenhout| editor2 = B. M. Mühlherr| editor3 = J-P. Tignol |editor4 = H. Van Maldeghem|series= Heritage of European Mathematics|url = https://www.ems-ph.org/books/book.php?proj_nr=168 |
publisher= [[European Mathematical Society]]|___location = Zürich| year= 2013| isbn= 978-3-03719-126-2|
chapter= Groupes et géométries de Coxeter |pages = 803–817}} This manuscript was the foundational text for the theory of Coxeter groups, used for preparing Chapter IV of Bourbaki's ''Groupes et Algèbres de Lie''; it was first published in 2001.
* {{cite journal| first= Ernest B. | last = Vinberg| author-link = Ernest Vinberg| year=1971|
title = Discrete linear groups generated by reflections | journal = [[Mathematics of the USSR-Izvestiya]]|
pages= 1083–1119 | volume= 5 | issue = 5| doi = 10.1070/IM1971v005n05ABEH001203| bibcode = 1971IzMat...5.1083V| translator= P. Flor |mr = 0302779}}
* {{cite journal|first=Ernest B. |last = Vinberg| author-link = Ernest Vinberg|year= 1985|journal= [[Russian Mathematical Surveys]]|volume= 40|pages= 31–75 |url = https://iopscience.iop.org/article/10.1070/RM1985v040n01ABEH003527/pdf | publisher = [[London Mathematical Society]]| title = Hyperbolic reflection groups| issue=1 | doi=10.1070/RM1985v040n01ABEH003527 | bibcode=1985RuMaS..40...31V |translator = J. Wiegold}}
* {{cite book|mr=1254933|author1-link=Ernest Vinberg|last1=Vinberg|first1= Ernest B.|last2= Shvartsman|first2= O. V. | chapter= Discrete groups of motions of spaces of constant curvature|title = Geometry II: Spaces of Constant Curvature|pages= 139–248| series = Encyclopaedia Math. Sci.| volume = 29| publisher = [[Springer-Verlag]]|year= 1993| isbn = 3-540-52000-7}}
* {{citation |first=Matthias |last=Weber |title=Kepler's small stellated dodecahedron as a Riemann surface |journal=[[Pacific Journal of Mathematics]] |volume=220 |year=2005 |pages=167–182 |url=http://msp.org/pjm/2005/220-1/p09.xhtml |doi=10.2140/pjm.2005.220.167|doi-access=free }}
* {{citation |last=Wolf |first=Joseph A. |author-link=Joseph A. Wolf |title=Spaces of constant curvature |edition=6th |publisher=AMS Chelsea |year=2011 |isbn=978-0-8218-5282-8 }}
* {{cite book|mr=0986252| last = Yoshida | first= Masaaki | title= Fuchsian differential equations, with special emphasis on the Gauss-Schwarz theory|series= Aspects of Mathematics| volume= E11| publisher= Friedr. Vieweg & Sohn| year= 1987| isbn = 3-528-08971-7}}
 
{{refend}}
 
== Further reading ==
* {{citation |title=Automorphic Functions |first=Lester R. |last=Ford |author-link=Lester R. Ford |publisher=[[American Mathematical Society]] |year=1951 |isbn=0821837419 |orig-date=1929}}
* {{citation |last=Lehner |first=Joseph |author-link=Joseph Lehner |title=Discontinuous groups and automorphic functions |series=Mathematical Surveys |volume=8 |publisher=American Mathematical Society |year=1964 }}. (Note that Lehner has pointed out that his proof of Poincaré's polygon theorem is incomplete. He has subsequently recommended de Rham's 1971 exposition.)
* {{citation |last1=Sansone |first1=Giovanni |author-link=Giovanni Sansone |last2=Gerretsen |first2=Johan |title=Lectures on the theory of functions of a complex variable. II: Geometric theory |publisher=Wolters-Noordhoff |year=1969 }}
* {{citation |last=Series |first=Caroline |author-link=Caroline Series |title=The modular surface and continued fractions |journal=Journal of the London Mathematical Society |volume=31 |year=1985 |pages=69–80 |doi=10.1112/jlms/s2-31.1.69 }}
* {{citation |last=Thurston |first=William P. |author-link=William Thurston |title=Three-dimensional geometry and topology. Vol. 1. |editor=Silvio Levy |series=Princeton Mathematical Series |volume=35 |publisher=Princeton University Press |year=1997 |isbn=0-691-08304-5 }}
 
[[Category:Complex analysis]]
[[Category:Hyperbolic geometry]]
[[Category:Conformal mappings]]
[[Category:Ordinary differential equations]]
[[Category:Geometric group theory]]
[[Category:Coxeter groups]]
[[Category:Reflection groups]]
[[Category:Modular forms]]
[[Category:Spherical geometry]]
[[Category:Automorphic forms]]