Extended discrete element method: Difference between revisions

Content deleted Content added
No edit summary
Monurin (talk | contribs)
#suggestededit-add-desc 1.0
Tags: Mobile edit Mobile app edit Android app edit
 
(3 intermediate revisions by 3 users not shown)
Line 1:
{{Short description|Granular material interaction simulation technique}}
[[File:Internal temperature distribution in a particle.png|thumb|An internal temperature distribution for a spherical particle versus radius and time under a time-varying [[heat flux]].]]
 
Line 21 ⟶ 22:
| title=Computer Simulation of Liquids
| publisher=Clarendon Press Oxford
| year=1990}}</ref>) by additional properties such as the [[thermodynamic]] state, [[Stress (mechanicalmechanics)|stress]]/[[Deformation (mechanics)|strain]] or [[electro-magnetic]] field for each particle. Contrary to a [[continuum mechanics]] concept, the XDEM aims at resolving the particulate phase with its various processes attached to the particles. While the discrete element method predicts position and orientation in space and time for each particle, the extended discrete element method additionally estimates properties such as internal [[temperature]] and/or [[species]] distribution or mechanical impact with structures.
 
==History==
Line 78 ⟶ 79:
| pages=99–118
| citeseerx=10.1.1.470.6532
| s2cid=17460834
}}</ref> Xu 1997<ref>{{cite journal
| first1=B. H.
Line 348 ⟶ 350:
| pages=99–118
| citeseerx=10.1.1.470.6532
| s2cid=17460834
}}</ref> however, Chu and Yu<ref>{{cite journal
| first1=K. W.
Line 452 ⟶ 455:
| pages=2395–2410
| doi=10.1016/s0009-2509(02)00140-9
}}</ref> describe discrete particle-continuum fluid modelling of gas-solid fluidised beds. Further applications of XDEM include thermal conversion of biomass on a backward and forward acting grate. Heat transfer in thermal/reacting particulate systems was also solved and investigated, as comprehensively reviewed by Peng et al.<ref name="Peng">{{cite journal |last1=Peng |first1=Z. |last2=Doroodchi |first2=E. |last3=Moghtaderi |first3=B. |date=2020 |title=Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal processes: Theory and model development |journal=Progress in Energy and Combustion Science |volume=79,100847 |page=100847 |doi=10.1016/j.pecs.2020.100847|s2cid=218967044 }}</ref> The [[deformation (engineering)|deformation]] of a conveyor belt due to impacting [[granular material]] that is discharged over a chute represents an application in the field of [[Stress (mechanicalmechanics)|stress]]/[[Deformation (mechanics)|strain]] analysis.
 
{|