Content deleted Content added
TheMathCat (talk | contribs) m wikilink |
→Properties: proper |
||
(44 intermediate revisions by 18 users not shown) | |||
Line 1:
{{Short description|Function that is discontinuous at rationals and continuous at irrationals}}
{{CS1 config|mode=cs1}}
[[File:Thomae function (0,1).svg|200px|right|thumb|Point plot on the [[interval (mathematics)|interval]] (0,1). The topmost point in the middle shows ''f''(1/2) = 1/2.]]
'''Thomae's function''' is a [[real number|real]]-valued [[function (mathematics)|function]] of a real variable that can be defined as:<ref name="Beanland">{{
▲:<math>f(x) =
\begin{cases}
\frac{1}{q} &\text{if }x = \tfrac{p}{q}\quad (x \text{ is rational), with } p \in \mathbb Z \text{ and } q \in \mathbb N \text{ coprime}\\
0 &\text{if }x \text{ is irrational.}
\end{cases}</math>
It is named after [[Carl Johannes Thomae]], but has many other names: the '''popcorn function''', the '''raindrop function''', the '''countable cloud function''', the '''modified [[Dirichlet function]]''', the '''ruler function''' (not to be confused with the integer [[ruler function]]),<ref>{{cite book |last=Dunham |first=William |author-link=William Dunham (mathematician) |year=2008 |title=The Calculus Gallery: Masterpieces from Newton to Lebesgue |publisher=Princeton University Press |___location=Princeton |isbn=978-0-691-13626-4 | quote="
Since every [[rational number]] has a unique representation with [[coprime integers|coprime]] (also termed relatively prime) <math>p \in \mathbb Z</math> and <math>q \in \mathbb N</math>, the function is [[well-defined]]. Note that <math>q = +1</math> is the only number in <math>\mathbb N</math> that is coprime to <math>p = 0.</math>
It is a modification of the [[Dirichlet function]], which is 1 at rational numbers and 0 elsewhere.
==Properties==
{{unordered list
|<math>f</math> is [[periodic function|'''periodic''']] with period <math>1:\; f(x + n) = f(x)</math> for all [[integer]]s {{mvar|n}} and all real {{mvar|x}}.
{{Collapse top|title=Proof of periodicity|width=80%}}
For all <math>x \in \mathbb R \
For all <math>x \in \mathbb Q,\;</math> there exist <math>p \in \mathbb Z</math> and <math>q \in \mathbb N</math> such that <math>\;x = p/q,\;</math> and <math>\gcd(p,\;q) = 1.</math>
Line 34 ⟶ 29:
{{Collapse bottom}}
{{Collapse top|title=Proof of discontinuity at rational numbers|width=80%}}
Line 41 ⟶ 36:
This establishes <math>f(x_0) = 1/q.</math>
Let <math>\;\alpha \in \mathbb R \
These <math>x_n</math> are all irrational, and so <math>f(x_n) = 0</math> for all <math>n \in \mathbb N.</math>
This implies <math>|x_0 - x_n| = \frac{\alpha}{n},
Let <math>\;\varepsilon = 1/q\;</math>, and given <math>\delta > 0</math> let <math>n = 1 + \left\lceil\frac{\alpha}{\delta }\right\rceil.</math> For the corresponding <math>\;x_n</math> we have
<math display="block">|x_0 - x_n| = \frac{\alpha}{n} = \frac{\alpha}{1 + \left\lceil\frac{\alpha}{\delta}\right\rceil} < \frac{\alpha}{\left\lceil\frac{\alpha}{\delta}\right\rceil} \le \delta,</math>▼
▲<math>|x_0 - x_n| = \frac{\alpha}{n} = \frac{\alpha}{1 + \left\lceil\frac{\alpha}{\delta}\right\rceil} < \frac{\alpha}{\left\lceil\frac{\alpha}{\delta}\right\rceil} \le \delta,</math>
which is exactly the definition of discontinuity of <math>f</math> at <math>x_0</math>.
{{Collapse bottom}}
{{Collapse top|title=Proof of continuity at irrational arguments|width=80%}}
Since <math>f</math> is periodic with period <math>1</math> and <math>0 \in \Q,</math> it suffices to check all irrational points in <math>I=(0,
for <math>i = 1, \ldots, r</math> we have <math>0 < \frac{k_i}{i} < x_0 < \frac{k_i +1}{i}.</math>
The minimal distance of <math>x_0</math> to its ''i''-th lower and upper bounds equals
We define <math>\delta</math> as the minimum of all the finitely many <math>d_i.</math>
for all <math>i = 1,
▲for all <math>i = 1, ..., r,</math> <math>\quad |x_0 - k_i/i| \ge \delta\quad</math> and <math>\quad|x_0 - (k_i+1)/i| \ge \delta.</math>
This is to say, all these rational numbers <math> k_i/i,\;(k_i + 1)/i,\;</math> are outside the {{nowrap|<math>\delta</math>-neighborhood of <math>x_0.</math>}}
Now let <math>x \in \mathbb{Q} \cap (x_0 - \delta, x_0 + \delta)</math> with the unique representation <math>x = p/q</math> where <math> p, q \in \mathbb N</math> are coprime. Then, necessarily, <math> q > r,\;</math> and therefore,
Likewise, for all irrational <math> x \in I, \; f(x) = 0 = f(x_0),\;</math> and thus, if <math> \varepsilon > 0 </math> then any choice of (sufficiently small) <math>\delta > 0</math> gives
Therefore, <math>f</math> is continuous on <math> \mathbb R \
{{Collapse bottom}}
{{Collapse top|title=Proof of being nowhere differentiable|width=80%}}
*:For any [[sequence]] of irrational numbers <math>(a_n)_{n=1}^\infty</math> with <math>a_n \ne x_0</math> for all <math>n \in \mathbb{N}_{+}</math> that converges to the irrational point <math>x_0</math>, the sequence <math>(f(a_n))_{n=1}^\infty</math> is identically <math>0</math>, and so <math>\lim_{n \to \infty}\left|\frac{f(a_n)-f(x_0)}{a_n - x_0}\right| = 0</math>.
▲:* For irrational numbers:
*:
*:
▲::Thus for all <math>n,</math> <math>\left|\frac{f(b_n)-f(x_0)}{b_n - x_0} \right| > \frac{1/n - 0}{1/(\sqrt{5}\cdot n^2)} =\sqrt{5}\cdot n \ne 0\;</math> and so {{nowrap|<math>f</math> is not differentiable}} at all irrational <math>x_0.</math>
{{Collapse bottom}}
{{pb}}
{{pb}}
▲::The [[Lebesgue integrability condition|Lebesgue criterion for integrability]] states that a bounded function is Riemann integrable if and only if the set of all discontinuities has [[Lebesgue measure|measure zero]].<ref>{{Harvnb|Spivak|1965|p=53|loc=Theorem 3-8}}</ref> Every [[countability|countable]] subset of the real numbers - such as the rational numbers - has measure zero, so the above discussion shows that Thomae's function is Riemann integrable on any interval. The function's integral is equal to <math>0</math> over any set because the function is equal to zero ''[[almost everywhere]]''.
}}
▲*If <math>G = \{ \, (x,f(x)) : x \in (0,1) \, \} \subset \mathbb{R}^2</math> is the graph of the restriction of <math>f</math> to <math>(0,1)</math>, then the [[Minkowski–Bouligand dimension|'''box-counting dimension''']] of <math>G</math> is <math>4/3</math>.<ref>{{cite journal |last1=Chen |first1=Haipeng |last2=Fraser |first2=Jonathan M. |last3=Yu |first3=Han |year=2022 |title=Dimensions of the popcorn graph |journal=[[Proceedings of the American Mathematical Society]] |volume=150 |number=11 |pages=4729–4742 |doi=10.1090/proc/15729 |arxiv=2007.08407}}</ref>
==Related probability distributions==
Empirical probability distributions related to Thomae's function appear in [[DNA sequencing]].<ref name="Trifonov">{{cite journal |last1=Trifonov |first1=Vladimir |last2=Pasqualucci |first2=Laura |last3=Dalla-Favera |first3=Riccardo |last4=Rabadan |first4=Raul |year=2011 |title=Fractal-like Distributions over the Rational Numbers in High-throughput Biological and Clinical Data |journal=Scientific Reports |volume=1 |number=191 |page=191 |doi=10.1038/srep00191 |pmid=22355706 |pmc=3240948|arxiv=1010.4328 |bibcode=2011NatSR...1E.191T }}</ref> The human genome is [[diploid]], having two strands per chromosome. When sequenced, small pieces ("reads") are generated: for each spot on the genome, an integer number of reads overlap with it. Their ratio is a rational number, and typically distributed similarly to Thomae's function.
If pairs of positive integers <math>m, n</math> are sampled from a distribution <math>f(n,m)</math> and used to generate ratios <math>q=n/(n+m)</math>, this gives rise to a distribution <math>g(q)</math> on the rational numbers. If the integers are independent the distribution can be viewed as a [[convolution]] over the rational numbers, <math display="inline">g(a/(a+b)) = \sum_{t=1}^\infty f(ta)f(tb)</math>. Closed form solutions exist for [[power-law]] distributions with a cut-off. If <math>f(k) =k^{-\alpha} e^{-\beta k}/\mathrm{Li}_\alpha(e^{-\beta})</math> (where <math>\mathrm{Li}_\alpha</math> is the [[polylogarithm]] function) then <math>g(a/(a+b)) = (ab)^{-\alpha} \mathrm{Li}_{2\alpha}(e^{-(a+b)\beta})/\mathrm{Li}^2_{\alpha}(e^{-\beta})</math>. In the case of uniform distributions on the set <math>\{1,2,\ldots , L\}</math> <math>g(a/(a+b)) = (1/L^2) \lfloor L/\max(a,b) \rfloor</math>, which is very similar to Thomae's function.<ref name="Trifonov" />
==The ruler function==
Line 114 ⟶ 106:
==Related functions==
A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an [[Fσ set|{{math|''F''<sub>σ</sub>}} set]]. If such a function existed, then the irrationals would be an {{math|''F''<sub>σ</sub>}} set. The irrationals would then be the [[countable set|countable]] [[union (set theory)|union]] of [[closed set]]s <math display="inline">
A variant of Thomae's function can be used to show that any {{math|''F''<sub>σ</sub>}} subset of the real numbers can be the set of discontinuities of a function. If <math display="inline"> A =
▲:<math>f_A(x) = \begin{cases}
\frac{1}{n} & \text{if } x \text{ is rational and } n \text{ is minimal so that } x \in F_n\\
-\frac{1}{n} & \text{if } x \text{ is irrational and } n \text{ is minimal so that } x \in F_n\\
Line 133 ⟶ 124:
* [[Volterra's function]]
==
{{reflist}}
==
{{refbegin}}
*{{citation|last=Abbott |first=Stephen |year=2016 |title=Understanding Analysis |edition=Softcover reprint of the original 2nd |publisher=[[Springer Science+Business Media|Springer]] |___location=New York |isbn=978-1-4939-5026-3}}
*{{citation |last1=Bartle |first1=Robert G. |last2=Sherbert |first2=Donald R. |year=1999 |title=Introduction to Real Analysis |edition=3rd |publisher=Wiley |isbn=978-0-471-32148-4 |url-access=registration |url=https://archive.org/details/introductiontore00bart_1 }} (Example 5.1.6 (h))
{{refend}}
Line 151 ⟶ 138:
[[Category:Calculus]]
[[Category:Eponymous functions]]
[[Category:Fractals]]
[[Category:General topology]]
[[Category:Special functions]]
|