Content deleted Content added
Citation bot (talk | contribs) Alter: url. URLs might have been anonymized. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 499/3485 |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 38/990 |
||
(One intermediate revision by one other user not shown) | |||
Line 22:
Geometric programming is
closely related to [[convex optimization]]: any GP can be made convex by means of a change of variables.<ref name="tutorial"/> GPs have numerous applications, including component sizing in [[Integrated circuit|IC]] design,<ref>M. Hershenson, S. Boyd, and T. Lee. ''[https://web.stanford.edu/~boyd/papers/opamp.html Optimal Design of a CMOS Op-amp via Geometric Programming].'' Retrieved 8 January 2019.</ref><ref>
==Convex form==
Geometric programs are not in general convex optimization problems, but they can be transformed to convex problems by a change of variables and a transformation of the objective and constraint functions. In particular, after performing the change of variables <math>y_i = \log(x_i)</math> and taking the log of the objective and constraint functions, the functions <math>f_i</math>, i.e., the posynomials, are transformed into [[LogSumExp
==Software==
Line 33:
* [https://github.com/convexengineering/gpkit GPkit] is a Python package for cleanly defining and manipulating geometric programming models. There are a number of example GP models written with this package [https://github.com/convexengineering/gplibrary here].
*[https://web.stanford.edu/~boyd/ggplab/ GGPLAB] is a MATLAB toolbox for specifying and solving geometric programs (GPs) and generalized geometric programs (GGPs).
* [https://www.cvxpy.org/tutorial/dgp/index.html CVXPY] is a Python-embedded modeling language for specifying and solving convex optimization problems, including GPs, GGPs, and LLCPs.
==See also==
|