Content deleted Content added
m spelling fix: appraoch → approach |
Added short description Tags: Mobile edit Mobile app edit Android app edit App suggested edit App description add |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Computational model for solvent effects}}
[[Image:Pentaacrylat.png|thumb|COSMO surface of a pentaacrylate molecule (red = negative, green = positive equilibrium layer).]]
[[File:4-Nitrobenzoic-acid-elpot-3D-vdW.png|thumb|Charge density surface of 4-nitro-benzoicacid. Calculated with COSMO.]]
'''COSMO'''<ref name=":0" /><ref name=":1" /> (COnductor-like Screening MOdel) is a calculation method for determining the [[electrostatic]] interaction of a [[molecule]] with a [[solvent]]. COSMO is a dielectric continuum model<ref name=":0" /><ref name=":3">{{Cite journal |last=Herbert |first=John M. |date=2021-03-23 |title=Dielectric continuum methods for quantum chemistry |journal=WIREs Computational Molecular Science |volume=11 |issue=4 |doi=10.1002/wcms.1519 |arxiv=2203.06846 |s2cid=233629977 |issn=1759-0876}}</ref><ref>{{Cite book |last=Cramer |first=Christopher J. |title=Essentials of computational chemistry: theories and models |date=2004 |publisher=Wiley |isbn=0-470-09182-7 |edition=2nd |___location=Chichester, West Sussex, England |oclc=55887497}}</ref><ref>{{Cite book |last=Frank |first=Jensen |title=Introduction to computational chemistry |date=2017 |publisher=John Wiley & Sons |isbn=978-1-118-82599-0 |oclc=989360916}}</ref> (a.k.a. continuum solvation model). These models can be used in [[computational chemistry]] to model [[solvation]] effects. COSMO has become a popular method of these solvation models in recent years. The COSMO formalism is similar to the method proposed earlier by Hoshi et al.<ref name=":0" /><ref>{{Cite journal |last1=Hoshi |first1=Hajime |last2=Sakurai |first2=Minoru |last3=Inoue |first3=Yoshio |last4=Chûjô |first4=Riichirô |date=1987-07-15 |title=Medium effects on the molecular electronic structure. I. The formulation of a theory for the estimation of a molecular electronic structure surrounded by an anisotropic medium |journal=The Journal of Chemical Physics |volume=87 |issue=2 |pages=1107–1115 |doi=10.1063/1.453343 |bibcode=1987JChPh..87.1107H |issn=0021-9606}}</ref> The COSMO approach is based
Continuum solvation models
Unlike other continuum solvation models, COSMO derives the polarization charges of the continuum, caused by the polarity of the solute, from a scaled-conductor approximation. If the solvent were an ideal conductor the [[electric potential]] on the cavity surface must disappear. If the distribution of the [[electric charge]] in the molecule is known, e.g. from quantum chemistry, then it is possible to calculate the charge <math>q^*</math> on the surface segments. For solvents with finite dielectric constant this charge ''<math>q</math>'' is lower by approximately a factor <math>f(\varepsilon)</math>:
Line 20 ⟶ 21:
==Variants and implementations==
COSMO has been implemented in a number of quantum chemistry or semi-empirical codes such as [[Amsterdam Density Functional|ADF]], [[GAMESS-US]], [[Gaussian (software)|Gaussian]], [[MOPAC]], [[NWChem]], [[TURBOMOLE]], and [[Q-Chem]]. A COSMO version of the [[polarizable continuum model]] PCM has also been developed {{Citation needed|date=April 2022}}. Depending on the implementation, the details of the cavity construction and the used radii, the segments representing the molecule surface and the <math>x</math> value for the dielectric scaling function <math>f(\varepsilon)</math> may vary
==Comparison with other methods==
|