Content deleted Content added
Fgnievinski (talk | contribs) |
fixed typo (isotopic->isotropic) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 22:
Because innumerable materials are [[dielectric]]s or [[electrical conductor|conductors]] while comparatively few are [[ferromagnetism|ferromagnets]], the [[reflection (physics)|reflection]] or [[refraction]] of EM waves (including [[light]]) is more often due to differences in the ''electric'' properties of media than to differences in their magnetic properties. That circumstance tends to draw attention to the ''electric'' vectors, so that we tend to think of the direction of polarization as the direction of the electric vectors, and the "plane of polarization" as the plane containing the electric vectors and the direction of propagation.
[[File:Screen dish antenna.jpg|thumb|left|'''Fig.{{nnbsp}}3''':{{big| }}Vertically
Indeed, that is the convention used in the online ''Encyclopædia Britannica'',{{r|luntz}} and in [[Richard Feynman|Feynman]]'s lecture on polarization.{{r|feynman-1963}} In the latter case one must infer the convention from the context: Feynman keeps emphasizing the direction of the ''electric'' ('''E''') vector and leaves the reader to presume that the "plane of polarization" contains that vector — and this interpretation indeed fits the examples he gives. The same vector is used to describe the polarization of radio signals and [[antenna (radio)#Polarization|antennas]] (Fig.{{nnbsp}}3).<ref name="auto">Stratton, 1941, p.{{hsp}}280.</ref>
If the medium is magnetically isotropic but electrically ''non''-
This "natural" definition, however, depends on the theory of EM waves developed by [[James Clerk Maxwell]] in the 1860s — whereas the word ''polarization'' was coined about 50 years earlier, and the associated mystery dates back even further.
Line 47:
[[File:Calcite and polarizing filter.gif|frame|'''Fig.{{nnbsp}}4''':{{big| }}Printed label seen through a doubly-refracting calcite crystal{{hsp}} and a modern polarizing filter (rotated to show the different polarizations of the two images).]]
Polarization was discovered — but not named or understood — by [[Christiaan Huygens]], as he investigated the
Huygens defined a ''principal section'' of a calcite crystal as a plane normal to a natural surface and parallel to the axis of the obtuse solid angle.<ref>Huygens, 1690, tr. Thompson, pp.{{nnbsp}}55–6.</ref> This axis was parallel to the axes of the [[spheroid]]al [[Huygens–Fresnel principle|secondary waves]] by which he (correctly) explained the directions of the extraordinary refraction.
Line 140:
* B. Powell (July 1856), [https://archive.org/stream/s4philosophicalmag12londuoft#page/n13/mode/2up "On the demonstration of Fresnel's formulas for reflected and refracted light; and their applications"], ''Philosophical Magazine and Journal of Science'', Series 4, vol.{{nnbsp}}12, no.{{hsp}}76, pp.{{nnbsp}}1–20.
* J.A. Stratton, 1941, ''Electromagnetic Theory'', New York: McGraw-Hill.
* [[E. T. Whittaker]], 1910, [[A History of the Theories of Aether and Electricity|''A History of the Theories of Aether and Electricity: From the Age of Descartes to the Close of the Nineteenth Century'']], London: Longmans, Green, &
{{vpad|1=1ex}}
|