Content deleted Content added
Owen Reich (talk | contribs) Link suggestions feature: 2 links added. |
|||
(19 intermediate revisions by 14 users not shown) | |||
Line 2:
{{redirect|Adjoint matrix|the transpose of cofactor|Adjugate matrix}}
In [[mathematics]], the '''conjugate transpose''', also known as the '''Hermitian transpose''', of an <math>m \times n</math> [[Complex number|complex]] [[matrix (mathematics)|matrix]] <math>\
H. W. Turnbull, A. C. Aitken,
"An Introduction to the Theory of Canonical Matrices,"
1932.
</ref>
For [[Real number|real]] matrices, the conjugate transpose is just the transpose, <math>\
==Definition==
The conjugate transpose of an <math>m \times n</math> matrix <math>\
{{Equation box 1
|indent =
|title=
|equation = {{NumBlk||<math>\left(\
|cellpadding= 6
|border
Line 23 ⟶ 21:
|background colour=#F5FFFA}}
where the subscript <math>ij</math> denotes the <math>(i,j)</math>-th entry (matrix element), for <math>1 \le i \le n</math> and <math>1 \le j \le m</math>, and the overbar denotes a scalar complex conjugate.
This definition can also be written as
:<math>\
where <math>\
Other names for the conjugate transpose of a matrix are '''Hermitian transpose''', '''Hermitian conjugate''', '''adjoint matrix''' or '''transjugate'''. The conjugate transpose of a matrix <math>\
* <math>\
* <math>\
* <math>\
* <math>\
In some contexts, <math>\
==Example==
Suppose we want to calculate the conjugate transpose of the following matrix <math>\
:<math>\
We first transpose the matrix:
:<math>\
Then we conjugate every entry of the matrix:
:<math>\
==Basic remarks==
A square matrix <math>\
* [[hermitian matrix|Hermitian]] or [[self-adjoint_operator|self-adjoint]] if <math>\
* [[skew-Hermitian matrix|Skew Hermitian]] or antihermitian if <math>\
* [[normal matrix|Normal]] if <math>\
* [[Unitary matrix|Unitary]] if <math>\
Even if <math>\
The conjugate transpose "adjoint" matrix <math>\
The conjugate transpose
▲:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
That is, denoting each ''complex'' number <math>z</math> by the ''real'' <math>2 \times 2</math> matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''<math>z</math>''-multiplication on <math>\mathbb{C}</math>.
Line 67 ⟶ 62:
Thus, an <math>m \times n</math> matrix of complex numbers could be well represented by a <math>2m \times 2n</math> matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an <math>n \times m</math> matrix made up of complex numbers.
For an explanation of the notation used here, we begin by representing complex numbers <math>e^{i\theta}</math> as the [[rotation matrix]], that is,
<math display="block">
* <math>(\boldsymbol{A} + \boldsymbol{B})^\mathrm{H} = \boldsymbol{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\boldsymbol{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions.▼
e^{i\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
* <math>(z\boldsymbol{A})^\mathrm{H} = \overline{z} \boldsymbol{A}^\mathrm{H}</math> for any complex number <math>z</math> and any <math>m \times n</math> matrix <math>\boldsymbol{A}</math>.▼
</math>
* <math>(\boldsymbol{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \boldsymbol{A}^\mathrm{H}</math> for any <math>m \times n</math> matrix <math>\boldsymbol{A}</math> and any <math>n \times p</math> matrix <math>\boldsymbol{B}</math>. Note that the order of the factors is reversed.<ref name=":1" />▼
Since <math>e^{i\theta} = \cos \theta + i \sin \theta</math>, we are led to the matrix representations of the unit numbers as
* <math>\left(\boldsymbol{A}^\mathrm{H}\right)^\mathrm{H} = \boldsymbol{A}</math> for any <math>m \times n</math> matrix <math>\boldsymbol{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]].▼
<math display="block">
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\det\left(\boldsymbol{A}^\mathrm{H}\right) = \overline{\det\left(\boldsymbol{A}\right)}</math> where <math>\operatorname{det}(A)</math> denotes the [[determinant]] of <math>\boldsymbol{A}</math> .▼
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\operatorname{tr}\left(\boldsymbol{A}^\mathrm{H}\right) = \overline{\operatorname{tr}(\boldsymbol{A})}</math> where <math>\operatorname{tr}(A)</math> denotes the [[trace (matrix)|trace]] of <math>\boldsymbol{A}</math>.▼
</math>
* <math>\boldsymbol{A}</math> is [[invertible matrix|invertible]] [[if and only if]] <math>\boldsymbol{A}^\mathrm{H}</math> is invertible, and in that case <math>\left(\boldsymbol{A}^\mathrm{H}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{H}}</math>.▼
* The [[eigenvalue]]s of <math>\boldsymbol{A}^\mathrm{H}</math> are the complex conjugates of the [[eigenvalue]]s of <math>\boldsymbol{A}</math>.▼
A general complex number <math>z=x+iy</math> is then represented as <math>
* <math>\left\langle \boldsymbol{A} x,y \right\rangle_m = \left\langle x, \boldsymbol{A}^\mathrm{H} y\right\rangle_n </math> for any <math>m \times n</math> matrix <math>\boldsymbol{A}</math>, any vector in <math>x \in \mathbb{C}^n </math> and any vector <math>y \in \mathbb{C}^m </math>. Here, <math>\langle\cdot,\cdot\rangle_m</math> denotes the standard complex [[inner product]] on <math> \mathbb{C}^m </math>, and similarly for <math>\langle\cdot,\cdot\rangle_n</math>.▼
z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}.
</math> The [[complex conjugate]] operation (that sends <math>a + bi</math> to <math>a - bi</math> for real <math>a, b</math>) is encoded as the matrix transpose.<ref>{{cite book |last=Chasnov |first=Jeffrey R. |url=https://math.libretexts.org/Bookshelves/Differential_Equations/Applied_Linear_Algebra_and_Differential_Equations_(Chasnov)/02%3A_II._Linear_Algebra/01%3A_Matrices/1.06%3A_Matrix_Representation_of_Complex_Numbers |title=Applied Linear Algebra and Differential Equations |date=4 February 2022 |publisher=LibreTexts |contribution=1.6: Matrix Representation of Complex Numbers}}</ref>
==Properties==
▲* <math>(\
▲* <math>(z\
▲* <math>(\
▲* <math>\left(\
▲* If <math>\
▲* If <math>\
▲* <math>\
▲* The [[eigenvalue]]s of <math>\
▲* <math>\left\langle \
==Generalizations==
The last property given above shows that if one views <math>\
Another generalization is available: suppose <math>A</math> is a linear map from a complex [[vector space]] <math>V</math> to another, <math>W</math>, then the [[complex conjugate linear map]] as well as the [[transpose of a linear map|transposed linear map]] are defined, and we may thus take the conjugate transpose of <math>A</math> to be the complex conjugate of the transpose of <math>A</math>. It maps the conjugate [[dual space|dual]] of <math>W</math> to the conjugate dual of <math>V</math>.
Line 94 ⟶ 102:
[[Category:Linear algebra]]
[[Category:Matrices (mathematics)]]
|