Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit |
Fgnievinski (talk | contribs) |
||
(14 intermediate revisions by 9 users not shown) | |||
Line 1:
{{short description|Probabilistic model}}
{{about|the representation of probability distributions using graphs|the computer graphics journal|Graphical Models{{!}}''Graphical Models''}}
{{Machine learning|Structured prediction}}
{{More footnotes|date=May 2017}}
A '''graphical model''' or '''probabilistic graphical model''' ('''PGM''') or '''structured probabilistic model''' is a [[probabilistic model]] for which a [[Graph (discrete mathematics)|graph]] expresses the [[conditional dependence]] structure between [[random variable]]s.
==Types
Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or [[Factor graph|factorized]] representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, [[Bayesian network]]s and [[Markov random field]]s. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce.<ref name=koller09>{{cite book
|author=Koller, D.
Line 25:
===Undirected Graphical Model===
[[File:Examples of an Undirected Graph.svg|thumb|alt=An undirected graph with four vertices.|An undirected graph with four vertices
The undirected graph shown may have one of several interpretations; the common feature is that the presence of an edge implies some sort of dependence between the corresponding random variables.
▲The undirected graph shown may have one of several interpretations; the common feature is that the presence of an edge implies some sort of dependence between the corresponding random variables. From this graph we might deduce that <math>B,C,D</math> are all mutually independent, once <math>A</math> is known, or (equivalently in this case) that
:<math>P[A,B,C,D] = f_{AB}[A,B] \cdot f_{AC}[A,C] \cdot f_{AD}[A,D]</math>
for some non-negative functions
===Bayesian network===
{{main|Bayesian network}}
[[File:Example of a Directed Graph.svg|thumb|alt=Example of a directed acyclic graph on four vertices.|Example of a directed acyclic graph on four vertices
Line 46 ⟶ 48:
Any two nodes are [[Conditional independence|conditionally independent]] given the values of their parents. In general, any two sets of nodes are conditionally independent given a third set if a criterion called [[d-separation|''d''-separation]] holds in the graph. Local independences and global independences are equivalent in Bayesian networks.
This type of graphical model is known as a directed graphical model, [[Bayesian network]], or belief network. Classic machine learning models like [[hidden Markov models]], [[Artificial neural network|neural networks]] and newer models such as [[variable-order Markov model]]s can be considered special cases of Bayesian networks.
One of the simplest Bayesian Networks is the [[Naive Bayes classifier]].
Line 63 ⟶ 65:
|title=Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
|year=1996
|publisher=Morgan Kaufmann Pub.
|isbn=978-1-55860-412-4
}}
Line 70 ⟶ 73:
*[[Dependency network (graphical model)|Dependency network]] where cycles are allowed
*Tree-augmented classifier or '''TAN model'''
[[File:Tan corral.png|thumb| TAN model for "corral dataset"
*Targeted Bayesian network learning (TBNL) [[File:Tbnl corral.jpg|thumb|TBNL model for "corral dataset"]]
*A [[factor graph]] is an undirected [[bipartite graph]] connecting variables and factors. Each factor represents a function over the variables it is connected to. This is a helpful representation for understanding and implementing [[belief propagation]].
* A [[clique tree]] or junction tree is a [[tree (graph theory)|tree]] of [[clique (graph theory)|cliques]], used in the [[junction tree algorithm]].
Line 153 ⟶ 157:
|arxiv=0706.2040
|bibcode=2007PLSCB...3..252A
|doi-access=free
}}
*{{Cite journal | last1 = Jordan | first1 = M. I. | author-link=Michael I. Jordan| doi = 10.1214/088342304000000026 | title = Graphical Models | journal = Statistical Science | volume = 19 | pages = 140–155| year = 2004 | doi-access = free }}
|