Content deleted Content added
Change "Most common usage" and "Alternative definition" to "Definition 1" and "Definition 2" |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 3:
== Definition 1 ==
Let <math>\mathbb{R}</math> be the set of [[real number]]s and <math>\mathbb{C}</math> be the set of [[complex number]]s.
A ''positive semi-definite function'' of a [[real number|real]] variable ''x'' is a [[complex number|complex]]-valued function <math> f: \mathbb{R} \to \mathbb{C} </math> such that for any real numbers ''x''<sub>1</sub>, …, ''x''<sub>''n''</sub> the ''n'' × ''n'' [[matrix (mathematics)|matrix]]▼
▲A
:<math> A = \left(a_{ij}\right)_{i,j=1}^n~, \quad a_{ij} = f(x_i - x_j) </math>
is a [[positive-definite matrix|positive ''semi-''definite
By definition, a positive semi-definite matrix, such as <math>A</math>, is [[Hermitian matrix|Hermitian]]; therefore ''f''(−''x'') is the [[complex conjugate]] of ''f''(''x'')).
In particular, it is necessary (but not sufficient) that
Line 61 ⟶ 65:
==Definition 2==
Alternatively, a function <math>f : \reals^n \to \reals</math> is called ''positive-definite'' on a [[neighborhood (mathematics)|neighborhood]] ''D'' of the origin if <math>f(0) = 0</math> and <math>f(x) > 0</math> for every non-zero <math>x \in D</math>.<ref>{{cite book|last=Verhulst|first=Ferdinand|title=Nonlinear Differential Equations and Dynamical Systems|edition=2nd|publisher=Springer|year=1996|isbn=3-540-60934-2}}</ref><ref>{{cite book|last=Hahn|first=Wolfgang|title=Stability of Motion|url=https://archive.org/details/stabilityofmotio0000hahn|url-access=registration|publisher=Springer|year=1967}}</ref>
==See also==
* [[Positive definiteness]]
* [[Positive-definite kernel]]
|