Content deleted Content added
Jason Quinn (talk | contribs) cleanup of source, especially of unwanted spaces |
Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
(17 intermediate revisions by 10 users not shown) | |||
Line 2:
In [[mathematics]] and [[optimization]], a '''pseudo-Boolean function''' is a [[function (mathematics)|function]] of the form
:<math>f: \mathbf{B}^n \to \R,</math>
where {{math|1='''B''' = {{mset|0, 1}}}} is a ''[[Boolean ___domain]]'' and {{mvar|n}} is a nonnegative [[integer]] called the [[arity]] of the function. A [[Boolean function]] is then a special case, where the values are also restricted to 0 or 1.
==Representations==
Line 14:
==Optimization==
Minimizing (or, equivalently, maximizing) a pseudo-Boolean function is [[NP-hard]]. This can easily be seen by formulating, for example, the [[maximum cut]] problem as maximizing a pseudo-Boolean function.<ref name=
===Submodularity===
Line 20:
:<math>f(\boldsymbol{x}) + f(\boldsymbol{y}) \ge f(\boldsymbol{x} \wedge \boldsymbol{y}) + f(\boldsymbol{x} \vee \boldsymbol{y}), \; \forall \boldsymbol{x}, \boldsymbol{y}\in \mathbf{B}^n\,.</math>
This is an important class of pseudo-boolean functions, because they can be [[Submodular set function#Submodular
===Roof Duality===
If ''f'' is a quadratic polynomial, a concept called ''roof duality'' can be used to obtain a lower bound for its minimum value.<ref name=
===Quadratizations===
Line 30:
There are other possibilities, for example,
:<math>\displaystyle -x_1x_2x_3=\min_{z\in\mathbf{B}}z(-x_1+x_2+x_3)-x_1x_2-x_1x_3+x_1.</math>
Different reductions lead to different results. Take for example the following [[Cubic function|cubic polynomial]]:<ref name=
:<math>\displaystyle f(\boldsymbol{x})=-2x_1+x_2-x_3+4x_1x_2+4x_1x_3-2x_2x_3-2x_1x_2x_3.</math>
Using the first reduction followed by roof duality, we obtain a lower bound of
===Polynomial Compression Algorithms===
Consider a pseudo-Boolean function <math> f </math> as a mapping from <math>\{-1,1\}^n</math> to <math>\mathbb{R}</math>. Then <math>f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i.</math> Assume that each coefficient <math>\hat{f}(I)</math> is integral. Then for an integer <math>k</math> the problem P of deciding whether <math> f(x) </math> is more or equal to <math>k</math> is NP-complete. It is proved in <ref name=
==See also==
Line 45:
==References==
* {{cite journal |last=Ishikawa |first=H. |year=2011 |title=Transformation of general binary MRF minimization to the first order case |journal=[[IEEE Transactions on Pattern Analysis and Machine Intelligence]] |doi=10.1109/tpami.2010.91 |pmid=20421673 |citeseerx=10.1.1.675.2183 |s2cid=17314555 |volume=33 |number=6 |pages=1234–1249}}
* {{cite journal |last=O'Donnell |first=Ryan | author-link = Ryan O'Donnell (computer scientist)|year=2008 |title=Some topics in analysis of Boolean functions |journal=ECCC |issn=1433-8092 |url=https://eccc.weizmann.ac.il/report/2008/055/}}▼
▲* {{cite journal |last=O'Donnell |first=Ryan |year=2008 |title=Some topics in analysis of Boolean functions |journal=ECCC |issn=1433-8092 |url=https://eccc.weizmann.ac.il/report/2008/055/}}
* {{cite conference |last1=Rother |first1=C. |last2=Kolmogorov |first2=V. |last3=Lempitsky |first3=V. |last4=Szummer |first4=M. |year=2007 |title=Optimizing Binary MRFs via Extended Roof Duality |conference=[[Conference on Computer Vision and Pattern Recognition]] |url=http://research.microsoft.com/pubs/67978/cvpr07-QPBOpi.pdf}}
*
[[Category:Mathematical optimization]]
|