Content deleted Content added
remove weird line break Tags: Mobile edit Mobile web edit Advanced mobile edit |
Citation bot (talk | contribs) Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(16 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|Function whose values are sets (mathematics)}}
{{About||multi-valued functions of mathematical analysis|Multivalued function|functions whose arguments are sets|Set function}}
[[File:Multivalued_function.svg|right|frame|This diagram represents a multi-valued, but not a proper (single-valued) [[Function (mathematics)|function]], because the element 3 in ''X'' is associated with two elements, ''b'' and ''c'', in ''Y''.]]▼
A '''set-valued function''',
Set-valued functions are also known as [[multivalued
▲[[File:Multivalued_function.svg|right|frame|This diagram represents a multi-valued, but not a proper (single-valued) [[Function (mathematics)|function]], because the element 3 in ''X'' is associated with two elements, ''b'' and ''c'', in ''Y''.]]
== Distinction from multivalued functions ==
[[File:Multivalued_functions_illustration.svg|thumb|right|600px|Illustration distinguishing multivalued functions from set-valued relations according to the criterion in page 29 of ''New Developments in Contact Problems'' by Wriggers and Panatiotopoulos (2014).]]
Although other authors may distinguish them differently (or not at all), Wriggers and Panatiotopoulos (2014) distinguish multivalued functions from set-valued functions (which they called ''set-valued relations'') by the fact that multivalued functions only take multiple values at finitely (or denumerably) many points, and otherwise behave like a [[Function (mathematics)|function]].<ref name=":0" /> Geometrically, this means that the graph of a multivalued function is necessarily a line of zero area that doesn't loop, while the graph of a set-valued relation may contain solid filled areas or loops.<ref name=":0" />
Alternatively, a [[multivalued function]] is a set-valued function {{mvar|f}} that has a further [[continuous function|continuity]] property, namely that the choice of an element in the set <math>f(x)</math> defines a corresponding element in each set <math>f(y)</math> for {{mvar|y}} close to {{mvar|x}}, and thus defines [[locally]] an ordinary function.
==
The [[argmax]] of a function is in general, multivalued. For example, <math>\operatorname{argmax}_{x \in \mathbb{R}} \cos(x) = \{2 \pi k\mid k \in \mathbb{Z}\}</math>.
Line 45 ⟶ 51:
* [[Selection theorem]]
* [[Ursescu theorem]]
* [[Binary relation]]
{{Functions navbox}}
[[Category:Variational analysis]]
[[Category:Mathematical optimization]]
|