Content deleted Content added
The description of the Borel measure is misleading, since talking about "The Borel" measure is not right, mu is just "a Borel" measure to be found (according to the referenced paper.) and fixed citation. |
Undid revision 1306141408 by 2601:1C0:5780:8D40:D04C:4026:7A75:7E14 (talk) Gamma(5) is 4 factorial and is definitely 24 |
||
(13 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Inverse of the gamma function}}
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{multiple image
| total_width = 500
| caption1 = Graph of an inverse gamma function
| image2 = Inverse gamma function in complex plane.png
}}
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{cite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2=Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume=125 |issue=5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320 |s2cid=119324101}}</ref> Usually, the inverse gamma function refers to the principal branch with ___domain on the real interval <math>\left[\beta, +\infty\right)</math> and image on the real interval <math>\left[\alpha, +\infty\right)</math>, where <math>\beta = 0.8856031\ldots</math><ref>{{oeis|A030171}}</ref> is the minimum value of the gamma function on the positive real axis and <math>\alpha = \Gamma^{-1}(\beta) = 1.4616321\ldots</math><ref>{{oeis|A030169}}</ref> is the ___location of that minimum.<ref>{{cite journal |last1=Uchiyama |first1=Mitsuru |title=The principal inverse of the gamma function |date=April 2012 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2
|jstor=41505586 |s2cid=85549521 |doi-access=free }}</ref>
▲[[File:Inverse Gamma Function.png|thumb]]
▲[[File:Inverse gamma function in complex plane.png|Plot of inverse gamma function in the complex plane |thumb]]
== Definition ==
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t)
▲Where <math>\mu (t)</math> is a [[Borel measure|Borel measure]] such that <math display="block">\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty \,,</math> and <math>a</math> and <math>b</math> are real numbers with <math>b \geqq 0</math>.
== Approximation ==
To compute the branches of the inverse gamma function
<math display="block"> \Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\
▲\Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}.</math>
where <math> \psi^{\left(1 \right)} \left(x \right)</math> is the [[trigamma function]]. The inverse gamma function also has the following [[asymptotic formula]]<ref>{{cite thesis |type=MS |last1=Amenyou |first1=Folitse Komla |last2=Jeffrey |first2=David |title="Properties and Computation of the inverse of the Gamma Function" |date=2018 |pages=28 |url=https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7340&context=etd}}</ref>
<math display="block"> \Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}\,,</math>▼
▲<math>\Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}</math>
▲Where <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
=== Series expansion ===
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the ''n'' th branch <math>\Gamma_{n}^{-1}(z)</math> of the inverse gamma function (<math>n\ge 0</math>)
<math display="block"> \Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)\,,</math>▼
▲<math>\Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)</math>
▲Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
== References ==
{{reflist}}
{{mathematics-stub}}▼
[[Category:Gamma and related functions]]
▲{{mathematics-stub}}
|