Content deleted Content added
m cite repair; |
m Reverted 1 edit by Natalielaurend (talk) to last revision by Alexander Davronov |
||
(15 intermediate revisions by 13 users not shown) | |||
Line 2:
{{other uses|G-code (disambiguation)|G programming language (disambiguation)}}
{{redirect|RS-274|the photoplotter format|Gerber format}}
{{More footnotes needed|date=January 2025}}
{{Ambox
| name = G-code
| subst = <includeonly>{{subst:substcheck}}</includeonly>
| issue = This article may require restoring an older revision.
| talk = RfC:_Partially_Reversing_Thumperward's_deletions
| date = May 13, 2025
}}
{{Infobox programming language
| name = G-code
Line 10 ⟶ 19:
| developer = [[Electronic Industries Alliance|Electronic Industries Association]] (RS-274), [[International Organization for Standardization]] (ISO-6983)
| implementations = Numerous; mainly [[Siemens]] Sinumerik, [[FANUC]], [[Haas Automation|Haas]], [[Heidenhain]], [[Yamazaki Mazak Corporation|Mazak]], [[Okuma Corporation|Okuma]]
| dialects =
| influenced by =
| influenced =
| programming language =
| platform =
| operating system =
| license =
| website =
| wikibooks =
}}
'''G-code''' (abbreviation for '''geometric code'''; also called<ref>{{cite tech report |editor1-last=Barkmeyer |editor1-first=Edward J. |editor2-last=Hopp |editor2-first=Theodore H. |editor3-last=Michael J. |editor3-first=Pratt |editor4-last=Gaylen R. |editor4-first=Rinaudot |title=Background Study: Requisite Elements, Rationale, and Technology Overview for the Systems Integration for Manufacturing Applications (SIMA) Program |date=1995 |publisher=NIST Technical Series Publications |___location=Gaithersburg, MD, USA |pages=45 |edition=NIST Interagency/Internal Report (NISTIR) 5662 |url=https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir5662.pdf}}</ref> '''RS-274''',<ref>{{cite book |title=EIA Standard RS-274-D Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines |date=February 1979 |publisher=Electronic Industries Association |___location=2001 Eye Street, NW, Washington, D.C. 20006 |url=https://search.worldcat.org/de/title/11135300 |ref=RS-274-D}}</ref> standardized today in '''ISO 6983-1'''<ref>{{cite tech report |editor1-last=Technical Committee ISO/TC 184/SC 1 |title=ISO 6983-1:2009 Automation systems and integration — Numerical control of machines — Program format and definitions of address words; Part 1: Data format for positioning, line motion and contouring control systems |date=December 2009 |publisher=International Standards Organization |___location=Geneva, Switzerland |url=https://www.iso.org/standard/34608.html |ref=ISO 6983:2009}}</ref>) is the most widely used [[computer numerical control]] (CNC) and [[3D printing]] [[programming language]]. It is used mainly in [[computer-aided manufacturing]] to control automated [[machine tool]]s, as well as for [[Slicer (3D printing)|3D-printer slicer applications]]. G-code has many variants.
G-code instructions are provided to a [[Programmable logic controller|machine controller]] (industrial computer) that tells the motors where to move, how fast to move, and what path to follow. The two most common situations are that, within a machine tool such as a [[Metal lathe|lathe]] or [[Milling (machining)|mill]], a [[cutting tool (machining)|cutting tool]] is moved according to these instructions through a toolpath cutting away material to leave only the finished workpiece and/or an unfinished workpiece is precisely positioned in any of up to nine axes<ref>Karlo Apro (2008). ''[https://books.google.com/books?id=Ws228Aht0bcC Secrets of 5-Axis Machining]''. Industrial Press Inc. {{ISBN|0-8311-3375-9}}.</ref> around the three dimensions relative to a toolpath and, either or both can move relative to each other. The same concept also extends to noncutting tools such as [[Forming (metalworking)|forming]] or [[Burnishing (metal)|burnishing]] tools, [[Gerber format|photoplotting]], additive methods such as
== History ==
The first implementation of a numerical control programming language was developed at the [[MIT Servomechanisms Laboratory]] in the 1950s. In the decades that followed, many implementations were developed by numerous organizations, both commercial and noncommercial. Elements of G-code had often been used in these implementations.<ref>{{cite book | last=Xu | first=Xun | date=2009 | url=https://books.google.com/books?id=habcATPQWJ4C | title=Integrating Advanced Computer-aided Design, Manufacturing, and Numerical Control: Principles and Implementations | publisher=Information Science Reference | page=166 | isbn=
During the 1970s through 1990s, many CNC machine tool builders attempted to overcome compatibility difficulties by standardizing on machine tool controllers built by [[Fanuc]]. [[Siemens]] was another market dominator in CNC controls, especially in Europe. In the 2010s, controller differences and incompatibility
== Syntax ==
Line 39 ⟶ 48:
Extensions and variations have been added independently by control manufacturers and machine tool manufacturers, and operators of a specific controller must be aware of the differences between each manufacturer's product.
One standardized version of G-code, known as ''BCL'' (Binary Cutter Language), is used only on very few machines. Developed at MIT, BCL was developed to control CNC machines in terms of straight lines and arcs.<ref>{{Cite book|url=https://books.google.com/books?id=GE8vBQAAQBAJ&q=binary+cutter+language+gcode&pg=PA321|title=Information Technology Standards: Quest for the Common Byte.|last=Martin.|first=Libicki|date=1995|publisher=Elsevier Science|isbn=
Some CNC machines use "conversational" programming, which is a [[wizard (software)|wizard]]-like programming mode that either hides G-code or completely bypasses the use of G-code. Some popular examples are Okuma's Advanced One Touch (AOT), Southwestern Industries' ProtoTRAK, Mazak's Mazatrol, Hurco's Ultimax and Winmax, Haas' Intuitive Programming System (IPS), and Mori Seiki's CAPS conversational software.
Line 47 ⟶ 56:
* [[Direct Numerical Control]]
* [[LinuxCNC]]
* [[List of computer-aided manufacturing software]]
== References ==
{{
== Bibliography ==
* {{MachinerysHandbook25e}}
* {{Smid2008}}
* {{Smid2010}}
* {{Citation |last=Smid |first=Peter |year=2004 |title=Fanuc CNC Custom Macros |publisher=Industrial Press |url=https://books.google.com/books?id=YKvH-zYd3VwC&pg=PR11 |isbn=
== External links ==
* [http://carlsonmfg.com/cnc-g-code-m-code-programming CNC G-Code and M-Code Programming]
* {{Citation |last1=Kramer |first1=T. R. |last2=Proctor |first2=F. M. |last3=Messina |first3=E. R. |title=The NIST RS274NGC Interpreter – Version 3 |date=1 Aug 2000 |id=NISTIR 6556 |journal=[[NIST]] |url=https://www.nist.gov/manuscript-publication-search.cfm?pub_id=823374 |ref=none}}
|