Gauss–Legendre algorithm: Difference between revisions

Content deleted Content added
No edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|QuadraticallyQuickly converging iterativecomputation algorithm for computingof π}}
The '''Gauss–Legendre algorithm''' is an [[algorithm]] to compute the digits of [[Pi|{{pi}}]]. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of {{pi}}. However, it has some drawbacks (for example, it is [[Random-access_memory|computer memory]]-intensive) and therefore all record-breaking calculations for many years have used other methods, almost always the [[Chudnovsky algorithm]]. For details, see [[chronology of computation of π|Chronology of computation of {{pi}}]].
 
Line 7:
 
== Algorithm ==
# Initial value setting: <math display="block">a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad p_0 = 1\qquad t_0 = \frac{1}{4}\qquad p_0 = 1.</math>
# Repeat the following instructions until the difference ofbetween <math>a_na_{n+1}</math> and <math>b_nb_{n+1}</math> is within the desired accuracy: <math display="block"> \begin{align}
a_{n+1} & = \frac{a_n + b_n}{2}, \\
\\
b_{n+1} & = \sqrt{a_n b_n}, \\
\\
t_p_{n+1} & = t_n - p_n(a_{n}-a_{n+1})^22p_n, \\
\\
p_{n+1} & = 2p_n.
\\
t_{n+1} & = t_n - p_n(a_{n+1}-a_{n})^2. \\
\end{align}
</math>
Line 26 ⟶ 25:
:<math>3.14159264\dots</math>
:<math>3.1415926535897932382\dots</math>
:<math>3.14159265358979323846264338327950288419711\dots</math>
 
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
The algorithm has [[quadratic convergence]], which essentially means that the number of correct digits doubles with each [[iteration]] of the algorithm.
 
Line 52:
 
:<math>E(k) = \int_0^{\pi/2}\sqrt {1-k^2 \sin^2\theta}\; d\theta</math>
 
and
 
:<math>K(k) = \int_0^{\pi/2}\frac{d\theta}{\sqrt {1-k^2 \sin^2\theta}}.</math>
 
Gauss knew of these two results.<ref name="brent">{{Citation
Line 111 ⟶ 107:
=== Legendre’s identity ===
Legendre proved the following identity:
:<math display="block">K(\cos \theta) E(\sin \theta ) + K(\sin \theta ) E(\cos \theta) - K(\cos \theta) K(\sin \theta) = {\pi \over 2}, \text{ </math>
for all } <math>\theta. </math>.<ref name="brent" />
 
=== Elementary proof with integral calculus ===
 
The Gauss-Legendre algorithm can be proven to give results converging to π<math>\pi</math> using only integral calculus. This is done here<ref>{{citation|title=Recent Calculations of π: The Gauss-Salamin Algorithm|last1=Lord|first1=Nick|doi=10.2307/3619132|year=1992|journal=The Mathematical Gazette|volume=76|issue=476|pages=231–242|jstor=3619132|s2cid=125865215 }}</ref> and here.<ref>{{citation|title=Easy Proof of Three Recursive π-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref>
 
== See also ==