Schur-convex function: Difference between revisions

Content deleted Content added
rearrange
 
(5 intermediate revisions by 4 users not shown)
Line 12:
If <math> g </math> is a convex function defined on a real interval, then <math> \sum_{i=1}^n g(x_i) </math> is Schur-convex.
 
=== Schur-OstrowskiSchur–Ostrowski criterion ===
If ''f'' is symmetric and all first partial derivatives exist, then
''f'' is Schur-convex if and only if
: <math>(x_i - x_j)\left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}\right) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
holds for all {{nowrap|<math>1\le ≤ ''i'' ≠ '',j'' ≤\le ''d''}}</math>.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|date=3 June 1992 |publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
<math>(x_i - x_j)\left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}\right) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
holds for all {{nowrap|1 ≤ ''i'' ≠ ''j'' ≤ ''d''}}.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|date=3 June 1992 |publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
 
== Examples ==
Line 24 ⟶ 22:
* The [[Shannon entropy]] function <math>\sum_{i=1}^d{P_i \cdot \log_2{\frac{1}{P_i}}}</math> is Schur-concave.
* The [[Rényi entropy]] function is also Schur-concave.
* <math>x \mapsto \sum_{i=1}^d{x_i^k},k \ge 1 </math> is Schur-convex if <math>k \geq 1</math>, and Schur-concave if <math>k \in (0, 1)</math>.
* <math> \sum_{i=1}^d{x_i^k},0 < k < 1 </math> is Schur-concave.
* The function <math> f(x) = \prod_{i=1}^d x_i </math> is Schur-concave, when we assume all <math> x_i > 0 </math>. In the same way, all the [[Elementary symmetric polynomial|elementary symmetric function]]s are Schur-concave, when <math> x_i > 0 </math>.
* A natural interpretation of [[majorization]] is that if <math> x \succ y </math> then <math> x </math> is moreless spread out than <math> y </math>. So it is natural to ask if statistical measures of variability are Schur-convex. The [[variance]] and [[standard deviation]] are Schur-convex functions, while the [[median absolute deviation]] is not.
* A probability example: If <math> X_1, \dots, X_n </math> are [[exchangeable random variables]], then the function <math> \text{E} \prod_{j=1}^n X_j^{a_j} </math> is Schur-convex as a function of <math> a=(a_1, \dots, a_n) </math>, assuming that the expectations exist.
* The [[Gini coefficient]] is strictly Schur convex.
 
== References ==
{{Reflistreflist}}
 
== See also ==
* [[Quasiconvex function]]
 
[[Category:Convex analysis]]
[[Category:Inequalities (mathematics)]]