Convex hull: Difference between revisions

Content deleted Content added
Convex closure is sometimes used to refer to the convex hull, but it can also refer to the closed convex hull. See talk page for details.
 
(19 intermediate revisions by 10 users not shown)
Line 3:
{{good article}}
[[File:Extreme points.svg|thumb|right|The convex hull of the red set is the blue and red [[convex set]].]]
In [[geometry]], the '''convex hull''' or, '''convex envelope''' or '''convex closure'''{{refn|The terminology ''convex closure'' refers to the fact that the convex hull defines a [[closure operator]]. However, this term is also frequently used to refer to the ''closed convex hull'', with which it should not be confused — see e.g {{harvtxt|Fan|1959}}, p.48.}} of a shape is the smallest [[convex set]] that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a [[Euclidean space]], or equivalently as the set of all [[convex combination]]s of points in the subset. For a [[Bounded set|bounded]] subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
 
Convex hulls of [[open set]]s are open, and convex hulls of [[compact set]]s are compact. Every compact convex set is the convex hull of its [[extreme point]]s. The convex hull operator is an example of a [[closure operator]], and every [[antimatroid]] can be represented by applying this closure operator to finite sets of points.
Line 44:
===Preservation of topological properties===
[[File:Versiera007.svg|thumb|The [[witch of Agnesi]]. The points on or above the red curve provide an example of a closed set whose convex hull is open (the open [[upper half-plane]]).]]
Topologically, the convex hull of an [[open set]] is always itself open, and (in Euclidean spaces) the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed.<ref>{{harvtxt|Grünbaum|2003}}, p. 16; {{harvtxt|Lay|1982}}, p. 21; {{harvtxt|Sakuma|1977}}.</ref> For instance, the closed set
 
:<math>\left \{ (x,y) \mathop{\bigg|} y\ge \frac{1}{1+x^2}\right\}</math>
Line 50:
(the set of points that lie on or above the [[witch of Agnesi]]) has the open [[upper half-plane]] as its convex hull.<ref>This example is given by {{harvtxt|Talman|1977}}, Remark 2.6.</ref>
 
TheConvex hulls can be defined more generally in infinite-dimensional [[topological vector space]]s, but they may not preserve compactness in these spaces. Instead, the compactness of convex hulls of compact sets, in finite-dimensional Euclidean spaces, is generalized by the [[Krein–Smulian theorem]], according to which the closed convex hull of a weakly compact subset of a [[Banach space]] (a subset that is compact under the [[weak topology]]) is weakly compact.{{sfnp|Whitley|1986}}
 
===Extreme points===
Line 84:
===Simple polygons===
{{main|Convex hull of a simple polygon}}
[[File:Convex hull of a simple polygon.svg|thumb|upright|Convex hull ( in blue and yellow) of a simple polygon (in blue)]]
The convex hull of a [[simple polygon]] encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a [[polygonal chain]] of the polygon and a single convex hull edge, are called ''pockets''. Computing the same decomposition recursively for each pocket forms a hierarchical description of a given polygon called its ''convex differences tree''.{{sfnp|Rappoport|1992}} Reflecting a pocket across its convex hull edge expands the given simple polygon into a polygon with the same perimeter and larger area, and the [[Erdős–Nagy theorem]] states that this expansion process eventually terminates.{{sfnp|Demaine|Gassend|O'Rourke|Toussaint|2008}}
 
Line 108:
 
[[Dynamic convex hull]] data structures can be used to keep track of the convex hull of a set of points undergoing insertions and deletions of points,{{sfnp|Chan|2012}} and [[kinetic convex hull]] structures can keep track of the convex hull for points moving continuously.{{sfnp|Basch|Guibas|Hershberger|1999}}
The construction of convex hulls also serves as a tool, a building block for a number of other computational-geometric algorithms such as the [[rotating calipers]] method for computing the [[width]] and [[Diameter (computational geometry)|diameter]] of a point set.{{sfnp|Toussaint|1983}}
 
== Related structures ==
Line 137:
 
== Applications ==
[[File:CIE1931xy_gamut_comparison.svg|thumb|The convex hull of the primary colors in each [[color space]] on a [[CIE 1931]] xy [[chromaticity diagram]] defines the space's [[gamut]] of possible colors]]
Convex hulls have wide applications in many fields. Within mathematics, convex hulls are used to study [[polynomial]]s, matrix [[eigenvalue]]s, and [[unitary element]]s, and several theorems in [[discrete geometry]] involve convex hulls. They are used in [[robust statistics]] as the outermost contour of [[Tukey depth]], are part of the [[bagplot]] visualization of two-dimensional data, and define risk sets of [[randomised decision rule|randomized decision rule]]s. Convex hulls of [[indicator vector]]s of solutions to combinatorial problems are central to [[combinatorial optimization]] and [[polyhedral combinatorics]]. In economics, convex hulls can be used to apply methods of [[convexity in economics]] to non-convex markets. In geometric modeling, the convex hull property [[Bézier curve]]s helps find their crossings, and convex hulls are part of the measurement of boat hulls. And in the study of animal behavior, convex hulls are used in a standard definition of the [[home range]].
 
===Mathematics===
[[File:Tverberg heptagon.svg|thumb|upright|Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by [[Tverberg's theorem]]]]
[[Newton polygon]]s of univariate [[polynomial]]s and [[Newton polytope]]s of multivariate polynomials are convex hulls of points derived from the exponents of the terms in the polynomial, and can be used to analyze the [[asymptotic analysis|asymptotic]] behavior of the polynomial and the valuations of its roots.<ref>{{harvtxt|Artin|1967}}; {{harvtxt|Gel'fand|Kapranov|Zelevinsky|1994}}</ref> Convex hulls and polynomials also come together in the [[Gauss–Lucas theorem]], according to which the [[Zero of a function|roots]] of the derivative of a polynomial all lie within the convex hull of the roots of the polynomial.{{sfnp|Prasolov|2004}}
 
[[File:Tverberg heptagon.svg|thumb|upright|Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by [[Tverberg's theorem]]]]
In [[Spectral theory|spectral analysis]], the [[numerical range]] of a [[normal matrix]] is the convex hull of its [[eigenvalue]]s.{{sfnp|Johnson|1976}}
The [[Russo–Dye theorem]] describes the convex hulls of [[unitary element]]s in a [[C*-algebra]].{{sfnp|Gardner|1984}}
Line 189 ⟶ 190:
==References==
{{refbegin|30em}}
*{{citation |last=Fan |first=Ky |title=Convex Sets and Their Applications. Summer Lectures 1959. |url=https://books.google.com/books?id=QKkrAAAAYAAJ&pg=PA48 |publisher=Argon national laboratory |year=1959}}
*{{citation
*{{citation |last=Andrew |first=A. M. |doi=10.1016/0020-0190(79)90072-3 |issue=5 |journal=[[Information Processing Letters]] |pages=216–219 |title=Another efficient algorithm for convex hulls in two dimensions |volume=9 |year=1979}}
| last = Fan | first = Ky
*{{citation |last=Artin |first=Emil |author-link=Emil Artin |contribution=2.5. Newton's Polygon |contribution-url=https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37 |mr=0237460 |pages=37–43 |publisher=Gordon and Breach |title=Algebraic Numbers and Algebraic Functions |year=1967}}
| title = Convex Sets and Their Applications. Summer Lectures 1959.
*{{citation |last=Auel |first=Asher |issue=3 |journal=[[Notices of the American Mathematical Society]] |mr=3889348 |pages=330–340 |title=The mathematics of Grace Murray Hopper |url=https://www.ams.org/journals/notices/201903/rnoti-p330.pdf |volume=66 |year=2019 |doi=10.1090/noti1810 |s2cid=76650751}}
| url = https://books.google.com/books?id=QKkrAAAAYAAJ&pg=PA48
*{{citation |last1=Avis |first1=David |author1-link=David Avis |last2=Bremner |first2=David |last3=Seidel |first3=Raimund |author3-link=Raimund Seidel |doi=10.1016/S0925-7721(96)00023-5 |issue=5–6 |journal=[[Computational Geometry (journal)|Computational Geometry]] |mr=1447243 |pages=265–301 |title=How good are convex hull algorithms? |volume=7 |year=1997}}
| publisher = Argon national laboratory
*{{citation |last1=Bárány |first1=Imre |author1-link=Imre Bárány |last2=Katchalski |first2=Meir |last3=Pach |first3=János |author3-link=János Pach |doi=10.1090/S0002-9939-1982-0663877-X |doi-access=free |issue=1 |journal=[[Proceedings of the American Mathematical Society]] |mr=663877 |pages=109–114 |title=Quantitative Helly-type theorems |volume=86 |year=1982 |jstor=2044407}}
| year = 1959}}
*{{citation |last1=Basch |first1=Julien |last2=Guibas |first2=Leonidas J. |author2-link=Leonidas J. Guibas |last3=Hershberger |first3=John |author3-link=John Hershberger |citeseerx=10.1.1.134.6921 |doi=10.1006/jagm.1998.0988 |issue=1 |journal=[[Journal of Algorithms]] |mr=1670903 |pages=1–28 |title=Data structures for mobile data |volume=31 |year=1999 |s2cid=8013433}}
*{{citation
*{{citation |last=Birkhoff |first=Garrett |author-link=Garrett Birkhoff |doi=10.2307/1989687 |issue=2 |journal=[[Transactions of the American Mathematical Society]] |mr=1501815 |pages=357–378 |title=Integration of functions with values in a Banach space |volume=38 |year=1935 |jstor=1989687}}
| last = Andrew | first = A. M.
*{{citation |last=Brown |first=K. Q. |doi=10.1016/0020-0190(79)90074-7 |issue=5 |journal=[[Information Processing Letters]] |pages=223–228 |title=Voronoi diagrams from convex hulls |volume=9 |year=1979 |s2cid=44537056}}
| doi = 10.1016/0020-0190(79)90072-3
*{{citation |last1=de Berg |first1=M. |author1-link=Mark de Berg |last2=van Kreveld |first2=M. |author2-link=Marc van Kreveld |last3=Overmars |first3=Mark |author3-link=Mark Overmars |last4=Schwarzkopf |first4=O. |author4-link=Otfried Cheong |edition=3rd |publisher=Springer |title=Computational Geometry: Algorithms and Applications |year=2008}}
| issue = 5
*{{citation |last=Chan |first=Timothy M. |author-link=Timothy M. Chan |doi=10.1142/S0218195912600096 |issue=4 |journal=[[International Journal of Computational Geometry and Applications]] |mr=2994585 |pages=341–364 |title=Three problems about dynamic convex hulls |volume=22 |year=2012}}
| journal = [[Information Processing Letters]]
*{{citation |last1=Chang |first1=J. S. |last2=Yap |first2=C.-K. |doi=10.1007/BF02187692 |issue=2 |journal=[[Discrete & Computational Geometry]] |mr=834056 |pages=155–182 |title=A polynomial solution for the potato-peeling problem |volume=1 |year=1986 |doi-access=free}}
| pages = 216–219
*{{citation |last=Chazelle |first=Bernard |author-link=Bernard Chazelle |doi=10.1109/TIT.1985.1057060 |issue=4 |journal=[[IEEE Transactions on Information Theory]] |mr=798557 |pages=509–517 |title=On the convex layers of a planar set |volume=31 |year=1985}}
| title = Another efficient algorithm for convex hulls in two dimensions
*{{citation |last=Chazelle |first=Bernard |author-link=Bernard Chazelle |citeseerx=10.1.1.113.8709 |doi=10.1007/BF02573985 |issue=1 |journal=[[Discrete & Computational Geometry]] |pages=377–409 |title=An optimal convex hull algorithm in any fixed dimension |url=https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf |volume=10 |year=1993 |s2cid=26605267}}
| volume = 9
*{{citation |last1=Chen |first1=Qinyu |last2=Wang |first2=Guozhao |date=March 2003 |doi=10.1016/s0167-8396(03)00003-7 |issue=1 |journal=Computer Aided Geometric Design |pages=29–39 |title=A class of Bézier-like curves |volume=20}}
| year = 1979}}
*{{citation |last1=Cranston |first1=M. |last2=Hsu |first2=P. |last3=March |first3=P. |issue=1 |journal=[[Annals of Probability]] |jstor=2244202 |mr=972777 |pages=144–150 |title=Smoothness of the convex hull of planar Brownian motion |volume=17 |year=1989 |doi=10.1214/aop/1176991500 |doi-access=free}}
*{{citation
*{{citation |last1=Demaine |first1=Erik D. |author1-link=Erik Demaine |last2=Gassend |first2=Blaise |last3=O'Rourke |first3=Joseph |author3-link=Joseph O'Rourke (professor) |last4=Toussaint |first4=Godfried T. |author4-link=Godfried Toussaint |contribution=All polygons flip finitely ... right? |doi=10.1090/conm/453/08801 |___location=Providence, Rhode Island |mr=2405683 |pages=231–255 |publisher=American Mathematical Society |series=Contemporary Mathematics |title=Surveys on Discrete and Computational Geometry |volume=453 |year=2008 |isbn=978-0-8218-4239-3}}
| last = Artin
*{{citation |last=Dines |first=L. L. |author-link=Lloyd Dines |doi=10.2307/2302604 |issue=4 |journal=[[American Mathematical Monthly]] |jstor=2302604 |mr=1524247 |pages=199–209 |title=On convexity |volume=45 |year=1938}}
| first = Emil
*{{citation |last1=Dirnböck |first1=Hans |last2=Stachel |first2=Hellmuth |author2-link=Hellmuth Stachel |issue=2 |journal=Journal for Geometry and Graphics |mr=1622664 |pages=105–118 |title=The development of the oloid |url=http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf |volume=1 |year=1997}}
| author-link = Emil Artin
*{{citation |last1=Edelsbrunner |first1=Herbert |author1-link=Herbert Edelsbrunner |last2=Kirkpatrick |first2=David G. |author2-link=David G. Kirkpatrick |last3=Seidel |first3=Raimund |author3-link=Raimund Seidel |doi=10.1109/TIT.1983.1056714 |issue=4 |journal=[[IEEE Transactions on Information Theory]] |pages=551–559 |title=On the shape of a set of points in the plane |volume=29 |year=1983}}
| contribution = 2.5. Newton's Polygon
*{{citation |last1=Epstein |first1=D. B. A. |author1-link=David B. A. Epstein |last2=Marden |first2=A. |author2-link=Albert Marden |editor-last=Epstein |editor-first=D. B. A. |editor-link=David B. A. Epstein |contribution=Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces |mr=903852 |pages=113–253 |publisher=Cambridge University Press |___location=Cambridge |series=London Mathematical Society Lecture Note Series |title=Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) |volume=111 |year=1987}}
| contribution-url = https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37
*{{citation |last1=Escobar |first1=Laura |last2=Kaveh |first2=Kiumars |date=September 2020 |issue=8 |journal=Notices of the American Mathematical Society |pages=1116–1123 |title=Convex polytopes, algebraic geometry, and combinatorics |url=https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf |volume=67 |doi=10.1090/noti2137 |s2cid=221659506}}
| mr = 0237460
*{{citation |last=Fultz |first=Brent |date=April 2020 |doi=10.1017/9781108641449 |page=55 |publisher=Cambridge University Press |title=Phase Transitions in Materials |isbn=9781108641449 |url=https://books.google.com/books?id=AkbhDwAAQBAJ&pg=PA55}}
| pages = 37–43
*{{citation |last=Gardner |first=L. Terrell |doi=10.2307/2044692 |issue=1 |journal=[[Proceedings of the American Mathematical Society]] |mr=722439 |page=171 |title=An elementary proof of the Russo-Dye theorem |volume=90 |year=1984 |jstor=2044692 |s2cid=119501393}}
| publisher = Gordon and Breach
*{{citation |last1=Gel'fand |first1=I. M. |author1-link=Israel Gelfand |last2=Kapranov |first2=M. M. |author2-link=Mikhail Kapranov |last3=Zelevinsky |first3=A. V. |author3-link=Andrei Zelevinsky |contribution=6. Newton Polytopes and Chow Polytopes |doi=10.1007/978-0-8176-4771-1 |isbn=0-8176-3660-9 |mr=1264417 |pages=193–213 |publisher=Birkhäuser |series=Mathematics: Theory & Applications |title=Discriminants, Resultants, and Multidimensional Determinants |year=1994}}
| title = Algebraic Numbers and Algebraic Functions
*{{citation |last1=Getz |first1=Wayne M. |last2=Wilmers |first2=Christopher C. |doi=10.1111/j.0906-7590.2004.03835.x |issue=4 |journal=[[Ecography]] |pages=489–505 |publisher=Wiley |title=A local nearest-neighbor convex-hull construction of home ranges and utilization distributions |url=https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf |volume=27 |year=2004 |bibcode=2004Ecogr..27..489G |s2cid=14592779}}
| year = 1967
*{{citation |last=Gibbs |first=Willard J. |author-link=Josiah Willard Gibbs |journal=Transactions of the Connecticut Academy of Arts and Sciences |pages=382–404 |title=A method of geometrical representation of the thermodynamic properties of substances by means of surfaces |volume=2 |year=1873}}; reprinted in ''[https://archive.org/details/scientificpaper00gibbgoog The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics]'', Longmans, Green, & Co., 1906, [https://archive.org/details/scientificpaper00gibbgoog/page/n67 pp. 33–54]
}}
*{{citation |last1=Graham |first1=Ronald L. |author1-link=Ronald Graham |last2=Yao |first2=F. Frances |author2-link=Frances Yao |doi=10.1016/0196-6774(83)90013-5 |issue=4 |journal=[[Journal of Algorithms]] |mr=729228 |pages=324–331 |title=Finding the convex hull of a simple polygon |volume=4 |year=1983}}
*{{citation
*{{citation |last=Grünbaum |first=Branko |author-link=Branko Grünbaum |edition=2nd |isbn=9780387004242 |publisher=Springer |series=Graduate Texts in Mathematics |title=Convex Polytopes |title-link=Convex Polytopes |volume=221 |year=2003}}
| last = Auel
*{{citation |last=Gustin |first=William |doi=10.1090/S0002-9904-1947-08787-5 |journal=[[Bulletin of the American Mathematical Society]] |mr=20800 |pages=299–301 |title=On the interior of the convex hull of a Euclidean set |volume=53 |year=1947 |issue=4 |doi-access=free}}
| first = Asher
*{{citation |last=Harris |first=Bernard |contribution=Mathematical models for statistical decision theory |contribution-url=https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf |mr=0356305 |pages=369–389 |title=Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971) |year=1971 |access-date=2020-01-01 |archive-date=2021-02-28 |archive-url=https://web.archive.org/web/20210228072623/https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf |url-status=dead}}
| issue = 3
*{{citation |last=Hautier |first=Geoffroy |editor1-last=Atahan-Evrenk |editor1-first=Sule |editor2-last=Aspuru-Guzik |editor2-first=Alan |contribution=Data mining approaches to high-throughput crystal structure and compound prediction |doi=10.1007/128_2013_486 |pages=139–179 |pmid=24287952 |publisher=Springer International Publishing |series=Topics in Current Chemistry |title=Prediction and Calculation of Crystal Structures: Methods and Applications |volume=345 |year=2014 |isbn=978-3-319-05773-6}}; see [https://books.google.com/books?id=9nu5BQAAQBAJ&pg=PA143 p. 143]
| journal = [[Notices of the American Mathematical Society]]
*{{citation |last=Herrlich |first=Horst |author-link=Horst Herrlich |department=Proceedings of the Symposium on General Topology and Applications (Oxford, 1989) |doi=10.1016/0166-8641(92)90092-E |issue=1–3 |journal=[[Topology and Its Applications]] |mr=1173256 |pages=181–187 |title=Hyperconvex hulls of metric spaces |volume=44 |year=1992 |doi-access=free}}
| mr = 3889348
*{{citation |last=Johnson |first=Charles R. |author-link=Charles Royal Johnson |doi=10.1016/0024-3795(76)90080-x |issue=1 |journal=[[Linear Algebra and Its Applications]] |mr=460358 |pages=89–94 |title=Normality and the numerical range |volume=15 |year=1976 |doi-access=free}}
| pages = 330–340
*{{citation |last1=Kashiwabara |first1=Kenji |last2=Nakamura |first2=Masataka |last3=Okamoto |first3=Yoshio |citeseerx=10.1.1.14.4965 |doi=10.1016/j.comgeo.2004.05.001 |issue=2 |journal=[[Computational Geometry (journal)|Computational Geometry]] |mr=2107032 |pages=129–144 |title=The affine representation theorem for abstract convex geometries |volume=30 |year=2005}}
| title = The mathematics of Grace Murray Hopper
*{{citation |last=Katoh |first=Naoki |journal=IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |pages=321–329 |title=Bicriteria network optimization problems |volume=E75-A |year=1992}}
| url = https://www.ams.org/journals/notices/201903/rnoti-p330.pdf
*{{citation |last1=Kernohan |first1=Brian J. |last2=Gitzen |first2=Robert A. |last3=Millspaugh |first3=Joshua J. |editor1-last=Millspaugh |editor1-first=Joshua |editor2-last=Marzluff |editor2-first=John M. |contribution=Analysis of animal space use and movements |isbn=9780080540221 |publisher=Academic Press |title=Radio Tracking and Animal Populations |year=2001}}
| volume = 66
*{{citation |last1=Kim |first1=Sooran |last2=Kim |first2=Kyoo |last3=Koo |first3=Jahyun |last4=Lee |first4=Hoonkyung |last5=Min |first5=Byung Il |last6=Kim |first6=Duck Young |bibcode=2019NatSR...920253K |date=December 2019 |doi=10.1038/s41598-019-56497-6 |issue=1 |journal=Scientific Reports |page=20253 |pmc=6934831 |pmid=31882982 |title=Pressure-induced phase transitions and superconductivity in magnesium carbides |volume=9}}
| year = 2019
*{{citation |last=Kirkpatrick |first=K. A. |arxiv=quant-ph/0305068 |doi=10.1007/s10702-006-1852-1 |issue=1 |journal=[[Foundations of Physics Letters]] |pages=95–102 |title=The Schrödinger–HJW theorem |volume=19 |year=2006 |bibcode=2006FoPhL..19...95K |s2cid=15995449}}
| doi = 10.1090/noti1810
*{{citation |last=Kiselman |first=Christer O. |doi=10.1090/S0002-9947-02-02915-X |issue=5 |journal=[[Transactions of the American Mathematical Society]] |mr=1881029 |pages=2035–2053 |title=A semigroup of operators in convexity theory |volume=354 |year=2002 |doi-access=free}}
| s2cid = 76650751
*{{citation |last=Knuth |first=Donald E. |author-link=Donald Knuth |doi=10.1007/3-540-55611-7 |isbn=3-540-55611-7 |___location=Heidelberg |mr=1226891 |publisher=Springer-Verlag |series=Lecture Notes in Computer Science |title=Axioms and Hulls |url=http://www-cs-faculty.stanford.edu/~uno/aah.html |volume=606 |year=1992 |s2cid=5452191 |access-date=2011-09-15 |archive-date=2017-06-20 |archive-url=https://web.archive.org/web/20170620062425/http://www-cs-faculty.stanford.edu/~uno/aah.html |url-status=dead}}
}}
*{{citation |last=Kőnig |first=Dénes |author-link=Dénes Kőnig |date=December 1922 |doi=10.1007/bf01215899 |issue=1 |journal=[[Mathematische Zeitschrift]] |pages=208–210 |title=Über konvexe Körper |volume=14 |s2cid=128041360}}; see also review by [[Hans Rademacher]] (1922), {{JFM|48.0835.01}}
*{{citation
*{{citation |last1=Krein |first1=Mark |author1-link=Mark Krein |last2=Milman |first2=David |author2-link=David Milman |journal=[[Studia Mathematica]] |pages=133–138 |title=On extreme points of regular convex sets |url=https://eudml.org/doc/219061 |volume=9 |year=1940 |doi=10.4064/sm-9-1-133-138 |doi-access=free}}
| last1 = Avis | first1 = David | author1-link = David Avis
*{{citation |last1=Krein |first1=M. |author1-link=Mark Krein |last2=Šmulian |first2=V. |doi=10.2307/1968735 |journal=[[Annals of Mathematics]] |series=Second Series |jstor=1968735 |mr=2009 |pages=556–583 |title=On regularly convex sets in the space conjugate to a Banach space |volume=41 |year=1940 |issue=3 |hdl=10338.dmlcz/100106 |hdl-access=free}}
| last2 = Bremner | first2 = David
*{{citation |last=Laurentini |first=A. |doi=10.1109/34.273735 |issue=2 |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |pages=150–162 |title=The visual hull concept for silhouette-based image understanding |volume=16 |year=1994}}
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
*{{citation |last=Lay |first=Steven R. |isbn=0-471-09584-2 |mr=655598 |publisher=John Wiley & Sons |title=Convex Sets and their Applications |year=1982}}
| doi = 10.1016/S0925-7721(96)00023-5
*{{citation |last=Lee |first=D. T. |author-link=Der-Tsai Lee |doi=10.1007/BF00993195 |issue=2 |journal=International Journal of Computer and Information Sciences |mr=724699 |pages=87–98 |title=On finding the convex hull of a simple polygon |volume=12 |year=1983 |s2cid=28600832}}
| issue = 5–6
*{{citation |last=Mason |first=Herbert B. |page=698 |title=Encyclopaedia of Ships and Shipping |url=https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698 |year=1908}}
| journal = [[Computational Geometry (journal)|Computational Geometry]]
*{{citation |last1=McCallum |first1=Duncan |last2=Avis |first2=David |author2-link=David Avis |doi=10.1016/0020-0190(79)90069-3 |issue=5 |journal=[[Information Processing Letters]] |mr=552534 |pages=201–206 |title=A linear algorithm for finding the convex hull of a simple polygon |volume=9 |year=1979}}
| mr = 1447243
*{{citation |last=Newton |first=Isaac |author-link=Isaac Newton |date=October 24, 1676 |publisher=University of Oxford |title=Letter to Henry Oldenburg |url=https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196 |work=The [[Newton Project]]}}
| pages = 265–301
*{{citation |last=Nicola |first=Piercarlo |contribution=General Competitive Equilibrium |doi=10.1007/978-3-662-04238-0_16 |pages=197–215 |publisher=Springer |title=Mainstream Mathematical Economics in the 20th Century |year=2000 |isbn=978-3-642-08638-0}}
| title = How good are convex hull algorithms?
*{{citation |last1=Nilsen |first1=Erlend B. |last2=Pedersen |first2=Simen |last3=Linnell |first3=John D. C. |year=2008 |doi=10.1007/s11284-007-0421-9 |issue=3 |journal=Ecological Research |pages=635–639 |title=Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? |volume=23 |bibcode=2008EcoR...23..635N |s2cid=30843551}}
| volume = 7
*{{citation |last=Oberman |first=Adam M. |doi=10.1090/S0002-9939-07-08887-9 |issue=6 |journal=[[Proceedings of the American Mathematical Society]] |mr=2286077 |pages=1689–1694 |title=The convex envelope is the solution of a nonlinear obstacle problem |volume=135 |year=2007 |doi-access=free}}
| year = 1997}}
*{{citation |last=Okon |first=T. |doi=10.4171/ZAA/952 |issue=2 |journal=Zeitschrift für Analysis und ihre Anwendungen |mr=1768994 |pages=303–314 |title=Choquet theory in metric spaces |volume=19 |year=2000 |doi-access=free}}
*{{citation
*{{citation |last1=Ottmann |first1=T. |last2=Soisalon-Soininen |first2=E. |last3=Wood |first3=Derick |author3-link=Derick Wood |doi=10.1016/0020-0255(84)90025-2 |issue=3 |journal=[[Information Sciences (journal)|Information Sciences]] |pages=157–171 |title=On the definition and computation of rectilinear convex hulls |volume=33 |year=1984}}
| last1 = Bárány | first1 = Imre | author1-link = Imre Bárány
*{{citation |last=Prasolov |first=Victor V. |contribution=1.2.1 The Gauss–Lucas theorem |contribution-url=https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12 |doi=10.1007/978-3-642-03980-5 |isbn=3-540-40714-6 |mr=2082772 |pages=12–13 |publisher=Springer |series=Algorithms and Computation in Mathematics |title=Polynomials |volume=11 |year=2004}}
| last2 = Katchalski | first2 = Meir
*{{citation |last=Pulleyblank |first=W. R. |author-link=William R. Pulleyblank |editor1-last=Bachem |editor1-first=Achim |editor2-last=Korte |editor2-first=Bernhard |editor3-last=Grötschel |editor3-first=Martin |contribution=Polyhedral combinatorics |doi=10.1007/978-3-642-68874-4_13 |pages=312–345 |publisher=Springer |title=Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982) |year=1983 |isbn=978-3-642-68876-8}}
| last3 = Pach | first3 = János | author3-link = János Pach
*{{citation |last=Rappoport |first=Ari |doi=10.1111/1467-8659.1140235 |issue=4 |journal=Computer Graphics Forum |pages=235–240 |title=An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon |volume=11 |year=1992 |s2cid=20137707}}
| doi = 10.1090/S0002-9939-1982-0663877-X | doi-access = free
*{{citation |last=Reay |first=John R. |doi=10.1007/BF02760885 |doi-access=free |issue=3 |journal=[[Israel Journal of Mathematics]] |mr=570883 |pages=238–244 (1980) |title=Several generalizations of Tverberg's theorem |volume=34 |year=1979 |s2cid=121352925}}
| issue = 1
*{{citation |last1=Rieffel |first1=Eleanor G. |author1-link=Eleanor Rieffel |last2=Polak |first2=Wolfgang H. |isbn=978-0-262-01506-6 |pages=215–216 |publisher=MIT Press |title=Quantum Computing: A Gentle Introduction |title-link=Quantum Computing: A Gentle Introduction |year=2011}}
| journal = [[Proceedings of the American Mathematical Society]]
*{{citation |last=Rockafellar |first=R. Tyrrell |author-link=R. Tyrrell Rockafellar |mr=0274683 |publisher=Princeton University Press |___location=Princeton, N.J. |series=Princeton Mathematical Series |title=Convex Analysis |volume=28 |year=1970}}
| mr = 663877
*{{citation |last=Rossi |first=Hugo |author-link=Hugo Rossi |doi=10.2307/1970292 |journal=[[Annals of Mathematics]] |jstor=1970292 |mr=133479 |pages=470–493 |series=Second Series |title=Holomorphically convex sets in several complex variables |volume=74 |year=1961 |issue=3}}
| pages = 109–114
*{{citation |last1=Rousseeuw |first1=Peter J. |author1-link=Peter Rousseeuw |last2=Ruts |first2=Ida |last3=Tukey |first3=John W. |author3-link=John Tukey |doi=10.1080/00031305.1999.10474494 |issue=4 |journal=[[The American Statistician]] |pages=382–387 |title=The bagplot: A bivariate boxplot |volume=53 |year=1999}}
| title = Quantitative Helly-type theorems
*{{citation |last=Sakuma |first=Itsuo |doi=10.1016/0022-0531(77)90095-3 |issue=1 |journal=[[Journal of Economic Theory]] |pages=223–227 |title=Closedness of convex hulls |volume=14 |year=1977}}
| volume = 86
*{{citation |last=Schneider |first=Rolf |author-link=Rolf Schneider |doi=10.1017/CBO9780511526282 |isbn=0-521-35220-7 |___location=Cambridge |mr=1216521 |publisher=Cambridge University Press |series=Encyclopedia of Mathematics and its Applications |title=Convex Bodies: The Brunn–Minkowski Theory |url=https://archive.org/details/convexbodiesbrun0000schn |volume=44 |year=1993}}
| year = 1982
*{{citation |last=Seaton |first=Katherine A. |arxiv=1603.08409 |doi=10.1080/17513472.2017.1318512 |issue=4 |journal=[[Journal of Mathematics and the Arts]] |mr=3765242 |pages=187–202 |title=Sphericons and D-forms: a crocheted connection |volume=11 |year=2017 |s2cid=84179479}}
| jstor = 2044407}}
*{{citation |last=Sedykh |first=V. D. |issue=6 |journal=Trudy Seminara imeni I. G. Petrovskogo |mr=630708 |pages=239–256 |title=Structure of the convex hull of a space curve |year=1981}}, translated in ''Journal of Soviet Mathematics'' 33 (4): 1140–1153, 1986, {{doi|10.1007/BF01086114}}
*{{citation
*{{citation |last=Sontag |first=Eduardo D. |author-link=Eduardo D. Sontag |issue=1 |journal=[[Pacific Journal of Mathematics]] |mr=644949 |pages=183–201 |title=Remarks on piecewise-linear algebra |url=https://projecteuclid.org/euclid.pjm/1102734396 |volume=98 |year=1982 |doi=10.2140/pjm.1982.98.183 |s2cid=18446330 |doi-access=free}}
| last1 = Basch | first1 = Julien
*{{citation |last=Steinitz |first=E. |author-link=Ernst Steinitz |doi=10.1515/crll.1914.144.1 |journal=[[Crelle's Journal|Journal für die Reine und Angewandte Mathematik]] |mr=1580890 |pages=1–40 |title=Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung) |volume=1914 |year=1914 |issue=144 |s2cid=122998337}}
| last2 = Guibas | first2 = Leonidas J. | author2-link = Leonidas J. Guibas
*{{citation |last=Talman |first=Louis A. |issue=1–2 |journal=Kōdai Mathematical Seminar Reports |mr=463985 |pages=62–70 |title=Fixed points for condensing multifunctions in metric spaces with convex structure |url=https://projecteuclid.org/euclid.kmj/1138833572 |volume=29 |year=1977}}
| last3 = Hershberger | first3 = John | author3-link = John Hershberger
*{{citation |last=Toussaint |first=Godfried |author-link=Godfried Toussaint |citeseerx=10.1.1.155.5671 |contribution=Solving geometric problems with the rotating calipers |title=Proceedings of IEEE MELECON '83, Athens |year=1983}}
| citeseerx = 10.1.1.134.6921
*{{citation |last=Toussaint |first=Godfried |author-link=Godfried Toussaint |contribution=An optimal algorithm for computing the relative convex hull of a set of points in a polygon |pages=853–856 |publisher=North-Holland |title=Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2 |year=1986}}
| doi = 10.1006/jagm.1998.0988
*{{citation |last=Weeks |first=Jeffrey R. |author-link=Jeffrey Weeks (mathematician) |doi=10.1016/0166-8641(93)90032-9 |issue=2 |journal=[[Topology and Its Applications]] |mr=1241189 |pages=127–149 |title=Convex hulls and isometries of cusped hyperbolic 3-manifolds |volume=52 |year=1993 |doi-access=free}}
| issue = 1
*{{citation |last=Westermann |first=L. R. J. |doi=10.1016/1385-7258(76)90065-2 |issue=2 |journal=[[Indagationes Mathematicae]] |mr=0404097 |pages=179–184 |title=On the hull operator |volume=38 |year=1976 |doi-access=free}}
| journal = [[Journal of Algorithms]]
*{{citation |last=White |first=F. Puryer |date=April 1923 |issue=68 |journal=Science Progress in the Twentieth Century |jstor=43432008 |pages=517–526 |title=Pure mathematics |volume=17}}
| mr = 1670903
*{{citation |last=Whitley |first=Robert |doi=10.2307/2046536 |issue=2 |journal=[[Proceedings of the American Mathematical Society]] |mr=835903 |pages=376–377 |title=The Kreĭn-Šmulian theorem |volume=97 |year=1986 |jstor=2046536}}
| pages = 1–28
*{{citation |last1=Williams |first1=Jason |last2=Rossignac |first2=Jarek |editor1-last=Kobbelt |editor1-first=Leif |editor2-last=Shapiro |editor2-first=Vadim |contribution=Tightening: curvature-limiting morphological simplification |doi=10.1145/1060244.1060257 |hdl=1853/3736 |pages=107–112 |publisher=ACM |title=Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005 |year=2005 |s2cid=15514388}}
| title = Data structures for mobile data
*{{citation |last=Worton |first=Bruce J. |doi=10.2307/2533254 |issue=4 |journal=[[Biometrics (journal)|Biometrics]] |jstor=2533254 |pages=1206–1215 |title=A convex hull-based estimator of home-range size |volume=51 |year=1995}}
| volume = 31
| year = 1999| s2cid = 8013433
}}
*{{citation
| last = Birkhoff | first = Garrett | author-link = Garrett Birkhoff
| doi = 10.2307/1989687
| issue = 2
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1501815
| pages = 357–378
| title = Integration of functions with values in a Banach space
| volume = 38
| year = 1935| jstor = 1989687 }}
*{{citation
| last = Brown | first = K. Q.
| doi = 10.1016/0020-0190(79)90074-7
| issue = 5
| journal = [[Information Processing Letters]]
| pages = 223–228
| title = Voronoi diagrams from convex hulls
| volume = 9
| year = 1979}}
*{{citation
| last1 = de Berg | first1 = M. | author1-link = Mark de Berg
| last2 = van Kreveld | first2 = M. | author2-link = Marc van Kreveld
| last3 = Overmars | first3 = Mark | author3-link = Mark Overmars
| last4 = Schwarzkopf | first4 = O. | author4-link = Otfried Cheong
| edition = 3rd
| publisher = Springer
| title = Computational Geometry: Algorithms and Applications
| year = 2008}}
*{{citation
| last = Chan | first = Timothy M. | author-link = Timothy M. Chan
| doi = 10.1142/S0218195912600096
| issue = 4
| journal = [[International Journal of Computational Geometry and Applications]]
| mr = 2994585
| pages = 341–364
| title = Three problems about dynamic convex hulls
| volume = 22
| year = 2012}}
*{{citation
| last1 = Chang | first1 = J. S.
| last2 = Yap | first2 = C.-K.
| doi = 10.1007/BF02187692
| issue = 2
| journal = [[Discrete & Computational Geometry]]
| mr = 834056
| pages = 155–182
| title = A polynomial solution for the potato-peeling problem
| volume = 1
| year = 1986| doi-access = free
}}
*{{citation
| last = Chazelle | first = Bernard | author-link = Bernard Chazelle
| doi = 10.1109/TIT.1985.1057060
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| mr = 798557
| pages = 509–517
| title = On the convex layers of a planar set
| volume = 31
| year = 1985}}
*{{citation
| last = Chazelle
| first = Bernard
| author-link = Bernard Chazelle
| citeseerx = 10.1.1.113.8709
| doi = 10.1007/BF02573985
| issue = 1
| journal = [[Discrete & Computational Geometry]]
| pages = 377–409
| title = An optimal convex hull algorithm in any fixed dimension
| url = https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
| volume = 10
| year = 1993
| s2cid = 26605267
}}
*{{citation
| last1 = Chen | first1 = Qinyu
| last2 = Wang | first2 = Guozhao
| date = March 2003
| doi = 10.1016/s0167-8396(03)00003-7
| issue = 1
| journal = Computer Aided Geometric Design
| pages = 29–39
| title = A class of Bézier-like curves
| volume = 20}}
*{{citation
| last1 = Cranston | first1 = M.
| last2 = Hsu | first2 = P.
| last3 = March | first3 = P.
| issue = 1
| journal = [[Annals of Probability]]
| jstor = 2244202
| mr = 972777
| pages = 144–150
| title = Smoothness of the convex hull of planar Brownian motion
| volume = 17
| year = 1989| doi = 10.1214/aop/1176991500
| doi-access = free
}}
*{{citation
| last1 = Demaine | first1 = Erik D. | author1-link = Erik Demaine
| last2 = Gassend | first2 = Blaise
| last3 = O'Rourke | first3 = Joseph | author3-link = Joseph O'Rourke (professor)
| last4 = Toussaint | first4 = Godfried T. | author4-link = Godfried Toussaint
| contribution = All polygons flip finitely ... right?
| doi = 10.1090/conm/453/08801
| ___location = Providence, Rhode Island
| mr = 2405683
| pages = 231–255
| publisher = American Mathematical Society
| series = Contemporary Mathematics
| title = Surveys on Discrete and Computational Geometry
| volume = 453
| year = 2008}}
*{{citation
| last = Dines | first = L. L. | author-link = Lloyd Dines
| doi = 10.2307/2302604
| issue = 4
| journal = [[American Mathematical Monthly]]
| jstor = 2302604
| mr = 1524247
| pages = 199–209
| title = On convexity
| volume = 45
| year = 1938}}
*{{citation
| last1 = Dirnböck
| first1 = Hans
| last2 = Stachel
| first2 = Hellmuth
| author2-link = Hellmuth Stachel
| issue = 2
| journal = Journal for Geometry and Graphics
| mr = 1622664
| pages = 105–118
| title = The development of the oloid
| url = http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf
| volume = 1
| year = 1997
}}
*{{citation
| last1 = Edelsbrunner | first1 = Herbert | author1-link = Herbert Edelsbrunner
| last2 = Kirkpatrick | first2 = David G. | author2-link = David G. Kirkpatrick
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
| doi = 10.1109/TIT.1983.1056714
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| pages = 551–559
| title = On the shape of a set of points in the plane
| volume = 29
| year = 1983}}
*{{citation
| last1 = Epstein | first1 = D. B. A. | author1-link = David B. A. Epstein
| last2 = Marden | first2 = A. | author2-link = Albert Marden
| editor-last = Epstein | editor-first = D. B. A. | editor-link = David B. A. Epstein
| contribution = Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces
| mr = 903852
| pages = 113–253
| publisher = Cambridge University Press | ___location = Cambridge
| series = London Mathematical Society Lecture Note Series
| title = Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)
| volume = 111
| year = 1987}}
*{{citation
| last1 = Escobar
| first1 = Laura
| last2 = Kaveh
| first2 = Kiumars
| date = September 2020
| issue = 8
| journal = Notices of the American Mathematical Society
| pages = 1116–1123
| title = Convex polytopes, algebraic geometry, and combinatorics
| url = https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf
| volume = 67
| doi = 10.1090/noti2137
| s2cid = 221659506
}}
*{{citation
| last = Fultz
| first = Brent
| date = April 2020
| doi = 10.1017/9781108641449
| page = 55
| publisher = Cambridge University Press
| title = Phase Transitions in Materials
| isbn = 9781108641449
| url = https://books.google.com/books?id=AkbhDwAAQBAJ&pg=PA55
}}
*{{citation
| last = Gardner | first = L. Terrell
| doi = 10.2307/2044692
| issue = 1
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 722439
| page = 171
| title = An elementary proof of the Russo-Dye theorem
| volume = 90
| year = 1984| jstor = 2044692
| s2cid = 119501393
}}
*{{citation
| last1 = Gel'fand | first1 = I. M. | author1-link = Israel Gelfand
| last2 = Kapranov | first2 = M. M. | author2-link = Mikhail Kapranov
| last3 = Zelevinsky | first3 = A. V. | author3-link = Andrei Zelevinsky
| contribution = 6. Newton Polytopes and Chow Polytopes
| doi = 10.1007/978-0-8176-4771-1
| isbn = 0-8176-3660-9
| mr = 1264417
| pages = 193–213
| publisher = Birkhäuser
| series = Mathematics: Theory & Applications
| title = Discriminants, Resultants, and Multidimensional Determinants
| year = 1994}}
*{{citation
| last1 = Getz
| first1 = Wayne M.
| last2 = Wilmers
| first2 = Christopher C.
| doi = 10.1111/j.0906-7590.2004.03835.x
| issue = 4
| journal = [[Ecography]]
| pages = 489–505
| publisher = Wiley
| title = A local nearest-neighbor convex-hull construction of home ranges and utilization distributions
| url = https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf
| volume = 27
| year = 2004
| s2cid = 14592779
}}
*{{citation
| last = Gibbs | first = Willard J. | author-link = Josiah Willard Gibbs
| journal = Transactions of the Connecticut Academy of Arts and Sciences
| pages = 382–404
| title = A method of geometrical representation of the thermodynamic properties of substances by means of surfaces
| volume = 2
| year = 1873}}; reprinted in ''[https://archive.org/details/scientificpaper00gibbgoog The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics]'', Longmans, Green, & Co., 1906, [https://archive.org/details/scientificpaper00gibbgoog/page/n67 pp. 33–54]
*{{citation
| last1 = Graham | first1 = Ronald L. | author1-link = Ronald Graham
| last2 = Yao | first2 = F. Frances | author2-link = Frances Yao
| doi = 10.1016/0196-6774(83)90013-5
| issue = 4
| journal = [[Journal of Algorithms]]
| mr = 729228
| pages = 324–331
| title = Finding the convex hull of a simple polygon
| volume = 4
| year = 1983}}
*{{citation
| last = Grünbaum | first = Branko | author-link = Branko Grünbaum
| edition = 2nd
| isbn = 9780387004242
| publisher = Springer
| series = Graduate Texts in Mathematics
| title = Convex Polytopes
| title-link = Convex Polytopes
| volume = 221
| year = 2003}}
*{{citation
| last = Gustin | first = William
| doi = 10.1090/S0002-9904-1947-08787-5
| journal = [[Bulletin of the American Mathematical Society]]
| mr = 20800
| pages = 299–301
| title = On the interior of the convex hull of a Euclidean set
| volume = 53
| year = 1947| issue = 4
| doi-access = free
}}
*{{citation
| last = Harris
| first = Bernard
| contribution = Mathematical models for statistical decision theory
| contribution-url = https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf
| mr = 0356305
| pages = 369–389
| title = Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971)
| year = 1971
}}
*{{citation
| last = Hautier | first = Geoffroy
| editor1-last = Atahan-Evrenk | editor1-first = Sule
| editor2-last = Aspuru-Guzik | editor2-first = Alan
| contribution = Data mining approaches to high-throughput crystal structure and compound prediction
| doi = 10.1007/128_2013_486
| pages = 139–179
| pmid = 24287952
| publisher = Springer International Publishing
| series = Topics in Current Chemistry
| title = Prediction and Calculation of Crystal Structures: Methods and Applications
| volume = 345
| year = 2014}}; see [https://books.google.com/books?id=9nu5BQAAQBAJ&pg=PA143 p. 143]
*{{citation
| last = Herrlich | first = Horst | author-link = Horst Herrlich
| department = Proceedings of the Symposium on General Topology and Applications (Oxford, 1989)
| doi = 10.1016/0166-8641(92)90092-E
| issue = 1–3
| journal = [[Topology and Its Applications]]
| mr = 1173256
| pages = 181–187
| title = Hyperconvex hulls of metric spaces
| volume = 44
| year = 1992| doi-access = free
}}
*{{citation
| last = Johnson | first = Charles R. | author-link = Charles Royal Johnson
| doi = 10.1016/0024-3795(76)90080-x
| issue = 1
| journal = [[Linear Algebra and Its Applications]]
| mr = 460358
| pages = 89–94
| title = Normality and the numerical range
| volume = 15
| year = 1976| doi-access = free
}}
*{{citation
| last1 = Kashiwabara | first1 = Kenji
| last2 = Nakamura | first2 = Masataka
| last3 = Okamoto | first3 = Yoshio
| citeseerx = 10.1.1.14.4965
| doi = 10.1016/j.comgeo.2004.05.001
| issue = 2
| journal = [[Computational Geometry (journal)|Computational Geometry]]
| mr = 2107032
| pages = 129–144
| title = The affine representation theorem for abstract convex geometries
| volume = 30
| year = 2005}}
*{{citation
| last = Katoh | first = Naoki
| journal = IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences
| pages = 321–329
| title = Bicriteria network optimization problems
| volume = E75-A
| year = 1992}}
*{{citation
| last1 = Kernohan | first1 = Brian J.
| last2 = Gitzen | first2 = Robert A.
| last3 = Millspaugh | first3 = Joshua J.
| editor1-last = Millspaugh | editor1-first = Joshua
| editor2-last = Marzluff | editor2-first = John M.
| contribution = Analysis of animal space use and movements
| isbn = 9780080540221
| publisher = Academic Press
| title = Radio Tracking and Animal Populations
| year = 2001}}
*{{citation
| last1 = Kim | first1 = Sooran
| last2 = Kim | first2 = Kyoo
| last3 = Koo | first3 = Jahyun
| last4 = Lee | first4 = Hoonkyung
| last5 = Min | first5 = Byung Il
| last6 = Kim | first6 = Duck Young
| bibcode = 2019NatSR...920253K
| date = December 2019
| doi = 10.1038/s41598-019-56497-6
| issue = 1
| journal = Scientific Reports
| page = 20253
| pmc = 6934831 | pmid = 31882982
| title = Pressure-induced phase transitions and superconductivity in magnesium carbides
| volume = 9}}
*{{citation
| last = Kirkpatrick | first = K. A.
| arxiv = quant-ph/0305068
| doi = 10.1007/s10702-006-1852-1
| issue = 1
| journal = [[Foundations of Physics Letters]]
| pages = 95–102
| title = The Schrödinger–HJW theorem
| volume = 19
| year = 2006| bibcode = 2006FoPhL..19...95K
| s2cid = 15995449
}}
*{{citation
| last = Kiselman | first = Christer O.
| doi = 10.1090/S0002-9947-02-02915-X
| issue = 5
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1881029
| pages = 2035–2053
| title = A semigroup of operators in convexity theory
| volume = 354
| year = 2002| doi-access = free
}}
*{{citation
| last = Knuth
| first = Donald E.
| author-link = Donald Knuth
| doi = 10.1007/3-540-55611-7
| isbn = 3-540-55611-7
| ___location = Heidelberg
| mr = 1226891
| publisher = Springer-Verlag
| series = Lecture Notes in Computer Science
| title = Axioms and Hulls
| url = http://www-cs-faculty.stanford.edu/~uno/aah.html
| volume = 606
| year = 1992
| s2cid = 5452191
| access-date = 2011-09-15
| archive-date = 2017-06-20
| archive-url = https://web.archive.org/web/20170620062425/http://www-cs-faculty.stanford.edu/~uno/aah.html
| url-status = dead
}}
*{{citation
| last = Kőnig | first = Dénes | author-link = Dénes Kőnig
| date = December 1922
| doi = 10.1007/bf01215899
| issue = 1
| journal = [[Mathematische Zeitschrift]]
| pages = 208–210
| title = Über konvexe Körper
| volume = 14| s2cid = 128041360 }}; see also review by [[Hans Rademacher]] (1922), {{JFM|48.0835.01}}
*{{citation
| last1 = Krein
| first1 = Mark
| author1-link = Mark Krein
| last2 = Milman
| first2 = David
| author2-link = David Milman
| journal = [[Studia Mathematica]]
| pages = 133–138
| title = On extreme points of regular convex sets
| url = https://eudml.org/doc/219061
| volume = 9
| year = 1940
| doi = 10.4064/sm-9-1-133-138
| doi-access = free
}}
*{{citation
| last1 = Krein | first1 = M. | author1-link = Mark Krein
| last2 = Šmulian | first2 = V.
| doi = 10.2307/1968735
| journal = [[Annals of Mathematics]] | series = Second Series
| jstor = 1968735
| mr = 2009
| pages = 556–583
| title = On regularly convex sets in the space conjugate to a Banach space
| volume = 41
| year = 1940| issue = 3 | hdl = 10338.dmlcz/100106
| hdl-access = free
}}
*{{citation
| last = Laurentini | first = A.
| doi = 10.1109/34.273735
| issue = 2
| journal = IEEE Transactions on Pattern Analysis and Machine Intelligence
| pages = 150–162
| title = The visual hull concept for silhouette-based image understanding
| volume = 16
| year = 1994}}
*{{citation
| last = Lay | first = Steven R.
| isbn = 0-471-09584-2
| mr = 655598
| publisher = John Wiley & Sons
| title = Convex Sets and their Applications
| year = 1982}}
*{{citation
| last = Lee | first = D. T. | author-link = Der-Tsai Lee
| doi = 10.1007/BF00993195
| issue = 2
| journal = International Journal of Computer and Information Sciences
| mr = 724699
| pages = 87–98
| title = On finding the convex hull of a simple polygon
| volume = 12
| year = 1983| s2cid = 28600832 }}
*{{citation
| last = Mason
| first = Herbert B.
| page = 698
| title = Encyclopaedia of Ships and Shipping
| url = https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698
| year = 1908
}}
*{{citation
| last1 = McCallum | first1 = Duncan
| last2 = Avis | first2 = David | author2-link = David Avis
| doi = 10.1016/0020-0190(79)90069-3
| issue = 5
| journal = [[Information Processing Letters]]
| mr = 552534
| pages = 201–206
| title = A linear algorithm for finding the convex hull of a simple polygon
| volume = 9
| year = 1979}}
*{{citation
| last = Newton
| first = Isaac
| author-link = Isaac Newton
| date = October 24, 1676
| publisher = University of Oxford
| title = Letter to Henry Oldenburg
| url = https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196
| work = The Newton Project
}}
*{{citation
| last = Nicola | first = Piercarlo
| contribution = General Competitive Equilibrium
| doi = 10.1007/978-3-662-04238-0_16
| pages = 197–215
| publisher = Springer
| title = Mainstream Mathematical Economics in the 20th Century
| year = 2000}}
*{{citation
| last1 = Nilsen | first1 = Erlend B.
| last2 = Pedersen | first2 = Simen
| last3 = Linnell | first3 = John D. C.
| year = 2008
| doi = 10.1007/s11284-007-0421-9
| issue = 3
| journal = Ecological Research
| pages = 635–639
| title = Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?
| volume = 23| bibcode = 2008EcoR...23..635N
| s2cid = 30843551
}}
*{{citation
| last = Oberman | first = Adam M.
| doi = 10.1090/S0002-9939-07-08887-9
| issue = 6
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 2286077
| pages = 1689–1694
| title = The convex envelope is the solution of a nonlinear obstacle problem
| volume = 135
| year = 2007| doi-access = free
}}
*{{citation
| last = Okon | first = T.
| doi = 10.4171/ZAA/952
| issue = 2
| journal = Zeitschrift für Analysis und ihre Anwendungen
| mr = 1768994
| pages = 303–314
| title = Choquet theory in metric spaces
| volume = 19
| year = 2000| doi-access = free
}}
*{{citation
| last1 = Ottmann | first1 = T.
| last2 = Soisalon-Soininen | first2 = E.
| last3 = Wood | first3 = Derick | author3-link = Derick Wood
| doi = 10.1016/0020-0255(84)90025-2
| issue = 3
| journal = [[Information Sciences (journal)|Information Sciences]]
| pages = 157–171
| title = On the definition and computation of rectilinear convex hulls
| volume = 33
| year = 1984}}
*{{citation
| last = Prasolov
| first = Victor V.
| contribution = 1.2.1 The Gauss–Lucas theorem
| contribution-url = https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12
| doi = 10.1007/978-3-642-03980-5
| isbn = 3-540-40714-6
| mr = 2082772
| pages = 12–13
| publisher = Springer
| series = Algorithms and Computation in Mathematics
| title = Polynomials
| volume = 11
| year = 2004
}}
*{{citation
| last = Pulleyblank | first = W. R. | author-link = William R. Pulleyblank
| editor1-last = Bachem | editor1-first = Achim
| editor2-last = Korte | editor2-first = Bernhard
| editor3-last = Grötschel | editor3-first = Martin
| contribution = Polyhedral combinatorics
| doi = 10.1007/978-3-642-68874-4_13
| pages = 312–345
| publisher = Springer
| title = Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982)
| year = 1983}}
*{{citation
| last = Rappoport | first = Ari
| doi = 10.1111/1467-8659.1140235
| issue = 4
| journal = Computer Graphics Forum
| pages = 235–240
| title = An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon
| volume = 11
| year = 1992| s2cid = 20137707
}}
*{{citation
| last = Reay | first = John R.
| doi = 10.1007/BF02760885 | doi-access = free
| issue = 3
| journal = [[Israel Journal of Mathematics]]
| mr = 570883
| pages = 238–244 (1980)
| title = Several generalizations of Tverberg's theorem
| volume = 34
| year = 1979| s2cid = 121352925
}}
*{{citation
| last1 = Rieffel | first1 = Eleanor G. | author1-link = Eleanor Rieffel
| last2 = Polak | first2 = Wolfgang H.
| isbn = 978-0-262-01506-6
| pages = 215–216
| publisher = MIT Press
| title = Quantum Computing: A Gentle Introduction
| title-link = Quantum Computing: A Gentle Introduction
| year = 2011}}
*{{citation
| last = Rockafellar | first = R. Tyrrell | author-link = R. Tyrrell Rockafellar
| mr = 0274683
| publisher = Princeton University Press | ___location = Princeton, N.J.
| series = Princeton Mathematical Series
| title = Convex Analysis
| volume = 28
| year = 1970}}
*{{citation
| last = Rossi | first = Hugo | author-link = Hugo Rossi
| doi = 10.2307/1970292
| journal = [[Annals of Mathematics]]
| jstor = 1970292
| mr = 133479
| pages = 470–493
| series = Second Series
| title = Holomorphically convex sets in several complex variables
| volume = 74
| year = 1961| issue = 3 }}
*{{citation
| last1 = Rousseeuw | first1 = Peter J. | author1-link = Peter Rousseeuw
| last2 = Ruts | first2 = Ida
| last3 = Tukey | first3 = John W. | author3-link = John Tukey
| doi = 10.1080/00031305.1999.10474494
| issue = 4
| journal = [[The American Statistician]]
| pages = 382–387
| title = The bagplot: A bivariate boxplot
| volume = 53
| year = 1999}}
*{{citation
| last = Sakuma | first = Itsuo
| doi = 10.1016/0022-0531(77)90095-3
| issue = 1
| journal = [[Journal of Economic Theory]]
| pages = 223–227
| title = Closedness of convex hulls
| volume = 14
| year = 1977}}
*{{citation
| last = Schneider
| first = Rolf
| author-link = Rolf Schneider
| doi = 10.1017/CBO9780511526282
| isbn = 0-521-35220-7
| ___location = Cambridge
| mr = 1216521
| publisher = Cambridge University Press
| series = Encyclopedia of Mathematics and its Applications
| title = Convex Bodies: The Brunn–Minkowski Theory
| url = https://archive.org/details/convexbodiesbrun0000schn
| volume = 44
| year = 1993
}}
*{{citation
| last = Seaton | first = Katherine A.
| arxiv = 1603.08409
| doi = 10.1080/17513472.2017.1318512
| issue = 4
| journal = [[Journal of Mathematics and the Arts]]
| mr = 3765242
| pages = 187–202
| title = Sphericons and D-forms: a crocheted connection
| volume = 11
| year = 2017| s2cid = 84179479
}}
*{{citation
| last = Sedykh | first = V. D.
| issue = 6
| journal = Trudy Seminara Imeni I. G. Petrovskogo
| mr = 630708
| pages = 239–256
| title = Structure of the convex hull of a space curve
| year = 1981}}, translated in ''Journal of Soviet Mathematics'' 33 (4): 1140–1153, 1986, {{doi|10.1007/BF01086114}}
*{{citation
| last = Sontag
| first = Eduardo D.
| author-link = Eduardo D. Sontag
| issue = 1
| journal = [[Pacific Journal of Mathematics]]
| mr = 644949
| pages = 183–201
| title = Remarks on piecewise-linear algebra
| url = https://projecteuclid.org/euclid.pjm/1102734396
| volume = 98
| year = 1982
| doi = 10.2140/pjm.1982.98.183
| s2cid = 18446330
| doi-access = free
}}
*{{citation
| last = Steinitz | first = E. | author-link = Ernst Steinitz
| doi = 10.1515/crll.1914.144.1
| journal = [[Crelle's Journal|Journal für die Reine und Angewandte Mathematik]]
| mr = 1580890
| pages = 1–40
| title = Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)
| volume = 1914
| year = 1914| issue = 144 | s2cid = 122998337 }}
*{{citation
| last = Talman
| first = Louis A.
| issue = 1–2
| journal = Kōdai Mathematical Seminar Reports
| mr = 463985
| pages = 62–70
| title = Fixed points for condensing multifunctions in metric spaces with convex structure
| url = https://projecteuclid.org/euclid.kmj/1138833572
| volume = 29
| year = 1977
}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| citeseerx = 10.1.1.155.5671
| contribution = Solving geometric problems with the rotating calipers
| title = Proceedings of IEEE MELECON '83, Athens
| year = 1983}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| contribution = An optimal algorithm for computing the relative convex hull of a set of points in a polygon
| pages = 853–856
| publisher = North-Holland
| title = Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2
| year = 1986}}
*{{citation
| last = Weeks | first = Jeffrey R. | author-link = Jeffrey Weeks (mathematician)
| doi = 10.1016/0166-8641(93)90032-9
| issue = 2
| journal = [[Topology and Its Applications]]
| mr = 1241189
| pages = 127–149
| title = Convex hulls and isometries of cusped hyperbolic 3-manifolds
| volume = 52
| year = 1993| doi-access = free
}}
*{{citation
| last = Westermann | first = L. R. J.
| doi = 10.1016/1385-7258(76)90065-2
| issue = 2
| journal = [[Indagationes Mathematicae]]
| mr = 0404097
| pages = 179–184
| title = On the hull operator
| volume = 38
| year = 1976
| doi-access = free
}}
*{{citation
| last = White | first = F. Puryer
| date = April 1923
| issue = 68
| journal = Science Progress in the Twentieth Century
| jstor = 43432008
| pages = 517–526
| title = Pure mathematics
| volume = 17}}
*{{citation
| last = Whitley | first = Robert
| doi = 10.2307/2046536
| issue = 2
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 835903
| pages = 376–377
| title = The Kreĭn-Šmulian theorem
| volume = 97
| year = 1986| jstor = 2046536
}}
*{{citation
| last1 = Williams | first1 = Jason
| last2 = Rossignac | first2 = Jarek
| editor1-last = Kobbelt | editor1-first = Leif
| editor2-last = Shapiro | editor2-first = Vadim
| contribution = Tightening: curvature-limiting morphological simplification
| doi = 10.1145/1060244.1060257
| hdl = 1853/3736
| pages = 107–112
| publisher = ACM
| title = Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005
| year = 2005| s2cid = 15514388
}}
*{{citation
| last = Worton | first = Bruce J.
| doi = 10.2307/2533254
| issue = 4
| journal = [[Biometrics (journal)|Biometrics]]
| jstor = 2533254
| pages = 1206–1215
| title = A convex hull-based estimator of home-range size
| volume = 51
| year = 1995}}
{{refend}}