Content deleted Content added
m →Background: clean up spacing around commas and other punctuation fixes, replaced: ; , → ; , , → , |
Haking man (talk | contribs) Link suggestions feature: 3 links added. Tags: Visual edit Mobile edit Mobile web edit Newcomer task Suggested: add links |
||
Line 72:
With this choice, at {{math|<var>s</var>{{=}}0}} the right hand side terms become zero, (provided that the denominator is not zero), this corresponds to the case where all the injections are zero and this case has a well known and simple operational solution: all voltages are equal and all flow intensities are zero. Therefore, this choice for the embedding provides at s=0 a well known operational solution.
Now using classical techniques for [[variable elimination]] in polynomial systems<ref>B. Sturmfels, "Solving Systems of Polynomial Equations”, CBMS Regional Conference Series in Mathematics 97, AMS, 2002.</ref> (results from the theory of [[Resultants]] and [[Gröbner basis#Elimination|Gröbner basis]] it can be proven that equations ({{EquationNote|1}}) do in fact define {{math|<var>V(s)</var>}} as holomorphic functions. More significantly, they define {{math|<var>V(s)</var>}} as [[algebraic curves]]. It is this specific fact, which becomes true because the embedding is holomorphic that guarantees the uniqueness of the result. The solution at {{math|<var>s</var>{{=}}0}} determines uniquely the solution everywhere (except on a finite number of branch cuts), thus getting rid of the multi-valuedness of the load-flow problem.
The technique to obtain the coefficients for the power series expansion (on {{math|<var>s</var>{{=}}0}}) of voltages {{math|<var>V</var>}} is quite straightforward, once one realizes that equations ({{EquationNote|2}}) can be used to obtain them order after order. Consider the power series expansion for <math>\textstyle V(s)=\sum_{n = 0}^\infty a[n] s^n</math> and <math>\textstyle 1/V(s)=\sum_{n = 0}^\infty b[n] s^n</math>. By substitution into equations ({{EquationNote|1}}) and identifying terms at each order in {{math|<var>s<sup>n</sup></var>}}, one obtains:
Line 95:
Once the power series at {{math|<var>s</var>{{=}}0}} are calculated to the desired order, the problem of calculating them at {{math|<var>s</var>{{=}}1}} becomes one of [[analytic continuation]]. It should be strongly remarked that this does not have anything in common with the techniques of [[Homotopy#Applications|homotopic continuation]]. Homotopy is powerful since it only makes use of the concept of continuity and thus it is applicable to general smooth nonlinear systems, but on the other hand it does not always provide a reliable method to approximate the functions (as it relies on iterative schemes such as Newton-Raphson).
It can be proven<ref>L. Ahlfors, ''Complex analysis (3rd ed.)'', McGraw Hill, 1979.</ref> that algebraic curves are complete [[global analytic function]]s, that is, knowledge of the power series expansion at one point (the so-called germ of the function) uniquely determines the function everywhere on the [[complex plane]], except on a finite number of [[Branch point#Branch cuts|branch cuts]]. Stahl's extremal ___domain theorem<ref>G. A. Baker Jr and P. Graves-Morris, ''Padé Approximants'' (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Second Ed. 2010, p. 326.</ref> further asserts that there exists a maximal ___domain for the analytic continuation of the function, which corresponds to the choice of branch cuts with minimal [[Conformal radius#Version from infinity: transfinite diameter and logarithmic capacity|logarithmic capacity]] measure. In the case of algebraic curves the number of cuts is finite, therefore it would be feasible to find maximal continuations by finding the combination of cuts with minimal capacity. For further improvements, Stahl's theorem on the convergence of Padé Approximants<ref>H. Stahl, “The Convergence of Padé Approximants to Functions with Branch Points”, ''J. Approx. Theory'', '''91''' (1997), 139-204.
* G. A. Baker Jr and P. Graves-Morris, ''Padé Approximants'' (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Second Ed. 2010, p. 326-330.</ref> states that the diagonal and supra-diagonal Padé (or equivalently, the [[continued fraction]] approximants to the power series) converge to the maximal analytic continuation. The zeros and poles of the approximants remarkably accumulate on the set of [[Branch point#Branch cuts|branch cuts]] having minimal capacity.
These properties confer the load-flow method with the ability to unequivocally detect the condition of voltage collapse: the algebraic approximations are guaranteed to either converge to the solution if it exists, or not converge if the solution does not exist.
|