Quadrivettore: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Annullata la modifica 120762230 di Zototten01 (discussione) non funziona nel contesto
Etichetta: Annulla
Altri progetti: Creato la sezione e aggiunto il template "Interprogetto"
Etichette: Modifica da mobile Modifica da applicazione mobile Modifica da applicazione Android App full source
 
(4 versioni intermedie di 4 utenti non mostrate)
Riga 10:
 
che nella base standard dello spazio-tempo Minkowski rappresenta un ''evento''. I quattro valori sono le coordinate nello spazio e nel tempo dell'evento, in particolare <math>\mu </math>&nbsp;=&nbsp;0,&nbsp;1,&nbsp;2,&nbsp;3, sono le componenti spaziali, e ''c'' è la [[velocità della luce]].
Il fatto che <math> X^0 = ct</math> garantisce inoltre che le componenti abbiano la stessa [[unità di misura]].<ref>Jean-Bernard Zuber & Claude Itzykson, ''Quantum Field Theory'', pg 5 , ISBN 0-07-032071-3</ref><ref>[[Charles W. Misner]], [[Kip Thorne|Kip S. Thorne]] & [[John Archibald Wheeler|John A. Wheeler]],''Gravitation'', pg 51, ISBN 0-7167-0344-0</ref><ref>[[George Sterman]], ''An Introduction to Quantum Field Theory'', pg 4 , ISBN 0-521-31132-2</ref>
 
Il quadrivettore spostamento:
Riga 30:
dove nell'ultimo termine si è usata la [[notazione di Einstein|convenzione di Einstein]] che prevede la somma implicita sugli indici ripetuti; in questa somma <math>\nu</math> assume i valori da 0 a 3. L'operazione appena eseguita si chiama [[Innalzamento e abbassamento degli indici|innalzamento o abbassamento degli indici]] ed è in realtà dovuta alle relazioni tra lo [[spazio tangente]] e il suo [[spazio duale]], lo [[spazio cotangente]].
 
Volendo esprimere l'ugualianzauguaglianza in termini matriciali, possiamo considerare <math>A_\mu</math> e <math>A^\mu</math> le componenti di due vettori colonna e <math>g_{\mu \nu}</math> le componenti di una matrice 4 <math>\times</math> 4 che rappresenta un'applicazione lineare:
 
:<math>\begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} =
Riga 63:
==Prodotto scalare==
{{vedi anche|Prodotto scalare}}
Il [[prodotto scalare]] fra quadrivettori può essere scritto tramite il tensore metrico in forma semplificata come prodotto scalare euclideo fra un vettore covariante e uno controvariante:
 
:<math> \langle \mathbf U , \mathbf V \rangle =\sum_{\mu=0}^3 \sum_{\nu=0}^{3}{g}_{\mu \nu} {U}^{\mu} {V}^{\nu}={U}^{\mu}{g}_{\mu \nu}{V}^{\nu}={U}^{\mu}{V}_{\mu}=\sum_{\mu=0}^{3}{U}^{\mu}{V}_{\mu}</math>.
Riga 137:
* [[Trasformazione di Lorentz]]
 
== Altri progetti ==
{{Interprogetto|wikt=quadrivettore}}
 
== Collegamenti esterni ==
* {{Collegamenti esterni}}
 
{{Controllo di autorità}}
{{Portale|relatività}}