Content deleted Content added
CQ, dl, ce |
|||
(44 intermediate revisions by 31 users not shown) | |||
Line 2:
{{Use American English|date = January 2019}}
{{Use mdy dates|date = January 2019}}
{{Machine learning|Paradigms}}
'''Neuromorphic computing''' is an approach to computing that is inspired by the structure and function of the human brain.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131|url-access=subscription }}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> A neuromorphic computer/chip is any device that uses physical [[artificial neuron]]s to do computations.<ref>{{cite journal|last1=Mead|first1=Carver|title=Neuromorphic electronic systems|journal=Proceedings of the IEEE|date=1990|volume=78|issue=10|pages=1629–1636|doi=10.1109/5.58356|s2cid=1169506 |url=https://authors.library.caltech.edu/53090/1/00058356.pdf}}</ref><ref name=":2" /> In recent times, the term ''neuromorphic'' has been used to describe [[Analogue electronics|analog]], [[Digital electronics|digital]], [[Mixed-signal integrated circuit|mixed-mode analog/digital VLSI]], and software systems that implement models of [[neural system]]s (for [[perception]], [[motor control]], or [[multisensory integration]]).
A key aspect of neuromorphic engineering is understanding how the [[Morphology (biology)|morphology]] of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how [[information]] is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.
Neuromorphic engineering is an [[Interdisciplinarity|interdisciplinary]] subject that takes inspiration from [[biology]], [[physics]], [[mathematics]], [[computer science]], and [[electronic engineering]]<ref name=":2" /> to design [[Artificial neural network|artificial neural systems]], such as [[Machine vision|vision systems]], head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.<ref>{{Cite journal | doi = 10.1155/2012/705483| title = Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers| journal = Applied Computational Intelligence and Soft Computing| volume = 2012| pages = 1–21| year = 2012| last1 = Boddhu | first1 = S. K. | last2 = Gallagher | first2 = J. C. | doi-access = free}}</ref> One of the first applications for neuromorphic engineering was proposed by [[Carver Mead]]<ref>{{Cite journal |last1=Mead |first1=Carver A. |last2=Mahowald |first2=M. A. |date=1988-01-01 |title=A silicon model of early visual processing
==Neurological inspiration==
Neuromorphic engineering is for now set apart by the inspiration it takes from what
The biological processes of neurons and their [[synapse]]s are dauntingly complex, and thus very difficult to artificially simulate. A key feature of biological brains is that all of the processing in neurons uses analog [[Cell signalling|chemical signals]]. This makes it hard to replicate brains in computers because the current generation of computers is completely digital. However, the characteristics of these
The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly [[distributed processing|distributed]] throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.<ref>{{Cite journal | doi = 10.1088/1741-2560/13/5/051001| title = Large-scale neuromorphic computing systems| journal = Journal of Neural Engineering| volume = 13| pages = 1–15| year = 2016| last1 = Furber | first1 = Steve| issue = 5| pmid = 27529195| bibcode = 2016JNEng..13e1001F| doi-access = free}}</ref> Anatomical neural wiring diagrams that are being imaged by electron microscopy<ref>{{cite journal |last1=Devineni |first1=Anita |title=A complete map of the fruit-fly |journal=Nature |date=2 October 2024 |volume=634 |issue=8032 |pages=35–36 |doi=10.1038/d41586-024-03029-6|pmid=39358530 }}</ref> and functional neural connection maps that could be potentially obtained via intracellular recording at scale<ref>{{cite journal |last1=Wang |first1=Jun |last2=Jung |first2=Woo-Bin |last3=Gertner |first3=Rona |last4=Park |first4=Hongkun |last5=Ham |first5=Donhee |title=Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array |journal=Nature Biomedical Engineering |date=2025 |doi=10.1038/s41551-025-01352-5 |pmid=39934437 |url=https://www.nature.com/articles/s41551-025-01352-5|url-access=subscription }}</ref> can be used to better inspire, if not exactly mimicked, neuromorphic computing systems with more details.
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|author1=Rami A. Alzahrani|author2=Alice C. Parker|title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling |conference=International Conference on Neuromorphic Systems 2020|date=July 2020|pages=1–8|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> among others. The implementation details overlap with the concepts of [[artificial immune system]]s. Training software-based neuromorphic systems of [[spiking neural networks]] can be achieved using error backpropagation, e.g. using [[Python (programming language)|Python]]-based frameworks such as snnTorch,<ref>{{cite arXiv|last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |class=cs.NE |eprint=2109.12894 }}</ref> or using canonical learning rules from the biological learning literature, e.g. using BindsNet.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref>
==Examples==
Line 20 ⟶ 24:
As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|last1 = Farquhar|first1 = Ethan|date = May 2006|pages = 4114–4117|last2 = Hasler|first2 = Paul.| title=2006 IEEE International Symposium on Circuits and Systems | chapter=A Field Programmable Neural Array |doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
In November 2011, a group of [[MIT]] researchers created a computer chip that mimics the analog, ion-based communication in a synapse between two neurons using 400 transistors and standard [[CMOS]] manufacturing techniques.<ref>{{cite web|title=MIT creates "brain chip"|date=November 15, 2011 |url=http://www.extremetech.com/extreme/105067-mit-creates-brain-chip|access-date=4 December 2012}}</ref><ref name="Neuromorphic silicon paper">{{cite journal|title=Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities|doi=10.3389/fnins.2011.00108|pmid=21991244|pmc=3181466|volume=5|
In June 2012, [[spintronic]] researchers at [[Purdue University]] presented a paper on the design of a neuromorphic chip using [[Spin valve|lateral spin valve]]s and [[memristor]]s. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.<ref name="Spin Devices Prop">{{Cite arXiv|title=Proposal For Neuromorphic Hardware Using Spin Devices|eprint=1206.3227|last1=Sharad|first1=Mrigank|last2=Augustine|first2=Charles|last3=Panagopoulos|first3=Georgios|last4=Roy|first4=Kaushik|class=cond-mat.dis-nn|year=2012}}</ref>
Research at [[HP Labs]] on Mott memristors has shown that while they can be non-[[Volatile memory|volatile]], the volatile behavior exhibited at temperatures significantly below the [[phase transition]] temperature can be exploited to fabricate a [[neuristor]],<ref name=":0" /> a biologically
[[Neurogrid]], built by ''Brains in Silicon'' at [[Stanford University]],<ref>{{cite journal|last1=Boahen|first1=Kwabena|title=Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal=Proceedings of the IEEE|date=24 April 2014|volume=102|issue=5|pages=699–716|doi=10.1109/JPROC.2014.2313565|s2cid=17176371}}</ref> is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.<ref>{{cite journal|doi=10.1038/503022a|pmid = 24201264|title = Neuroelectronics: Smart connections|journal = Nature|volume = 503|issue = 7474|pages = 22–4|year = 2013|last1 = Waldrop|first1 = M. Mitchell|bibcode = 2013Natur.503...22W|doi-access = free}}</ref><ref>{{cite journal|doi=10.1109/JPROC.2014.2313565|title = Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal = Proceedings of the IEEE|volume = 102|issue = 5|pages = 699–716|year = 2014|last1 = Benjamin|first1 = Ben Varkey|last2 = Peiran Gao|last3 = McQuinn|first3 = Emmett|last4 = Choudhary|first4 = Swadesh|last5 = Chandrasekaran|first5 = Anand R.|last6 = Bussat|first6 = Jean-Marie|last7 = Alvarez-Icaza|first7 = Rodrigo|last8 = Arthur|first8 = John V.|last9 = Merolla|first9 = Paul A.|last10 = Boahen|first10 = Kwabena|s2cid = 17176371}}</ref>
A research project with implications for neuromorphic engineering is the Human Brain Project that is attempting to simulate a complete human brain in a supercomputer using biological data. It is made up of a group of researchers in neuroscience, medicine, and computing.<ref>{{cite web|title=Involved Organizations|url=http://www.humanbrainproject.eu/partners.html|access-date=22 February 2013
Other research with implications for neuromorphic engineering involve the [[BRAIN Initiative]]<ref name="economist">[https://www.economist.com/news/science-and-technology/21582495-computers-will-help-people-understand-brains-better-and-understanding-brains Neuromorphic computing: The machine of a new soul], The Economist, 2013-08-03</ref> and the [[TrueNorth]] chip from [[IBM]].<ref>{{cite journal|last1=Modha|first1=Dharmendra|title=A million spiking-neuron integrated circuit with a scalable communication network and interface|journal=Science|date=Aug 2014|volume=345|issue=6197|pages=668–673|doi=10.1126/science.1254642|pmid=25104385|bibcode=2014Sci...345..668M|s2cid=12706847}}</ref> Neuromorphic devices have also been demonstrated using nanocrystals, nanowires, and conducting polymers.<ref>{{Cite web|url=http://jessamynfairfield.com/wp-content/uploads/2017/03/PWMar17Fairfield.pdf|title=Smarter Machines|last=Fairfield|first=Jessamyn|date=March 1, 2017}}</ref> There also is development of a memristive device for quantum neuromorphic architectures.<ref>{{cite journal |last1=Spagnolo |first1=Michele |last2=Morris |first2=Joshua |last3=Piacentini |first3=Simone |last4=Antesberger |first4=Michael |last5=Massa |first5=Francesco |last6=Crespi |first6=Andrea |last7=Ceccarelli |first7=Francesco |last8=Osellame |first8=Roberto |last9=Walther |first9=Philip |title=Experimental photonic quantum memristor |journal=Nature Photonics |date=April 2022 |volume=16 |issue=4 |pages=318–323 |doi=10.1038/s41566-022-00973-5 |arxiv=2105.04867 |bibcode=2022NaPho..16..318S |s2cid=234358015 |language=en |issn=1749-4893}}<br/>News article: {{cite news |title=Erster "Quanten-Memristor" soll KI und Quantencomputer verbinden |url=https://www.derstandard.de/consent/tcf/story/2000134458057/erster-quanten-memristor-sollki-und-quantencomputer-verbinden |access-date=28 April 2022 |work=DER STANDARD |language=de-AT}}<br/>Lay summary report: {{cite news |title=Artificial neurons go quantum with photonic circuits |url=https://phys.org/news/2022-03-artificial-neurons-quantum-photonic-circuits.html |access-date=19 April 2022 |work=[[University of Vienna]] |language=en}}</ref> In 2022, researchers at MIT have reported the development of brain-inspired [[Physical neural network|artificial synapses]], using [[Proton#Hydrogen ion|the ion proton]] ({{chem|H|+}}), for 'analog [[deep learning]]'.<ref>{{cite news |title='Artificial synapse' could make neural networks work more like brains |url=https://www.newscientist.com/article/2331368-artificial-synapse-could-make-neural-networks-work-more-like-brains/ |access-date=21 August 2022 |work=New Scientist}}</ref><ref>{{cite journal |last1=Onen |first1=Murat |last2=Emond |first2=Nicolas |last3=Wang |first3=Baoming |last4=Zhang |first4=Difei |last5=Ross |first5=Frances M. |last6=Li |first6=Ju |last7=Yildiz |first7=Bilge |last8=del Alamo |first8=Jesús A. |title=Nanosecond protonic programmable resistors for analog deep learning |journal=Science |date=29 July 2022 |volume=377 |issue=6605 |pages=539–543 |doi=10.1126/science.abp8064 |pmid=35901152 |bibcode=2022Sci...377..539O |s2cid=251159631 |url=http://li.mit.edu/Archive/Papers/22/Onen22EmondScience.pdf |language=en |issn=0036-8075}}</ref>
Line 38 ⟶ 42:
The [[Blue Brain Project]], led by Henry Markram, aims to build biologically detailed digital reconstructions and simulations of the mouse brain. The Blue Brain Project has created in silico models of rodent brains, while attempting to replicate as many details about its biology as possible. The supercomputer-based simulations offer new perspectives on understanding the structure and functions of the brain.
The European Union funded a series of projects at the University of Heidelberg, which led to the development of [[BrainScaleS]] (brain-inspired multiscale computation in neuromorphic hybrid systems), a hybrid analog [[neuromorphic]] supercomputer located at Heidelberg University, Germany. It was developed as part of the Human Brain Project neuromorphic computing platform and is the complement to the [[SpiNNaker]] supercomputer (which is based on digital technology). The architecture used in BrainScaleS mimics biological neurons and their connections on a physical level; additionally, since the components are made of silicon, these model neurons operate on average 864 times (24 hours of real time is 100 seconds in the machine simulation) faster than that of their biological counterparts.<ref>{{Cite web|date=2016-03-21|title=Beyond von Neumann, Neuromorphic Computing Steadily Advances|url=https://www.hpcwire.com/2016/03/21/lacking-breakthrough-neuromorphic-computing-steadily-advance/|access-date=2021-10-08|website=HPCwire|language=en-US}}</ref>
In 2019, the European Union funded the project "Neuromorphic quantum computing"<ref>{{Cite journal |title=Neuromrophic Quantum Computing {{!}} Quromorphic Project {{!}} Fact Sheet {{!}} H2020 |url=https://cordis.europa.eu/project/id/828826 |access-date=2024-03-18 |website=CORDIS {{!}} European Commission |language=en |doi=10.3030/828826|url-access=subscription }}</ref> exploring the use of neuromorphic computing to perform quantum operations. Neuromorphic quantum computing<ref>{{Citation |last1=Pehle |first1=Christian |title=Neuromorphic quantum computing |date=2021-03-30 |
[[Brainchip]] announced in October 2021 that it was taking orders for its Akida AI Processor Development Kits<ref>{{Cite web|url=https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02438858-2A1332482?access_token=83ff96335c2d45a094df02a206a39ff4|title=Taking Orders of Akida AI Processor Development Kits|date=21 October 2021}}</ref> and in January 2022 that it was taking orders for its Akida AI Processor PCIe boards,<ref>{{cite web | url=https://www.electronics-lab.com/first-mini-pciexpress-board-with-spiking-neural-network-chip/ | title=First mini PCIexpress board with spiking neural network chip | date=January 19, 2022 }}</ref> making it the world's first commercially available neuromorphic processor.
===Neuromemristive systems===
Neuromemristive systems
There exist several neuron inspired threshold logic functions<ref name="Maan 1–13"/> implemented with memristors that have applications in high level [[pattern recognition]] applications. Some of the applications reported recently include [[speech recognition]],<ref>{{Cite journal|title = Memristor pattern recogniser: isolated speech word recognition|journal = Electronics Letters|pages = 1370–1372|volume = 51|issue = 17|doi = 10.1049/el.2015.1428|first1 = A.K.|last1 = Maan|first2 = A.P.|last2 = James|first3 = S.|last3 = Dimitrijev|year = 2015|bibcode = 2015ElL....51.1370M|hdl = 10072/140989|s2cid = 61454815|hdl-access = free}}</ref> [[face recognition]]<ref>{{Cite journal|title = Memristive Threshold Logic Face Recognition|journal = Procedia Computer Science|date = 2014-01-01|pages = 98–103|volume = 41|series = 5th Annual International Conference on Biologically Inspired Cognitive Architectures, 2014 BICA|doi = 10.1016/j.procs.2014.11.090|first1 = Akshay Kumar|last1 = Maan|first2 = Dinesh S.|last2 = Kumar|first3 = Alex Pappachen|last3 = James|doi-access = free|hdl = 10072/68372|hdl-access = free}}</ref> and [[object recognition]].<ref>{{Cite journal|title = Memristive Threshold Logic Circuit Design of Fast Moving Object Detection|journal = IEEE Transactions on Very Large Scale Integration (VLSI) Systems|date = 2015-10-01|issn = 1063-8210|pages = 2337–2341|volume = 23|issue = 10|doi = 10.1109/TVLSI.2014.2359801|first1 = A.K.|last1 = Maan|first2 = D.S.|last2 = Kumar|first3 = S.|last3 = Sugathan|first4 = A.P.|last4 = James|arxiv = 1410.1267|s2cid = 9647290}}</ref> They also find applications in replacing conventional digital logic gates.<ref>{{Cite journal|title = Resistive Threshold Logic|journal = IEEE Transactions on Very Large Scale Integration (VLSI) Systems|date = 2014-01-01|issn = 1063-8210|pages = 190–195|volume = 22|issue = 1|doi = 10.1109/TVLSI.2012.2232946|first1 = A.P.|last1 = James|first2 = L.R.V.J.|last2 = Francis|first3 = D.S.|last3 = Kumar|arxiv = 1308.0090|s2cid = 7357110}}</ref><ref>{{Cite journal|title = Threshold Logic Computing: Memristive-CMOS Circuits for Fast Fourier Transform and Vedic Multiplication|journal = IEEE Transactions on Very Large Scale Integration (VLSI) Systems|date = 2015-11-01|issn = 1063-8210|pages = 2690–2694|volume = 23|issue = 11|doi = 10.1109/TVLSI.2014.2371857|first1 = A.P.|last1 = James|first2 = D.S.|last2 = Kumar|first3 = A.|last3 = Ajayan|arxiv = 1411.5255|s2cid = 6076956}}</ref>
For (quasi)ideal passive memristive circuits, the evolution of the memristive memories can be written in a closed form ([[Caravelli-Traversa-Di Ventra equation|Caravelli–Traversa–Di Ventra equation]]):<ref>{{cite journal |last=Caravelli |display-authors=etal|arxiv=1608.08651 |title=The complex dynamics of memristive circuits: analytical results and universal slow relaxation |year=2017 |doi=10.1103/PhysRevE.95.022140 |pmid= 28297937 |volume=95 |issue= 2 |
:<math> \frac{d}{dt} \vec{X} = -\alpha \vec{X}+\frac{1}{\beta} (I-\chi \Omega X)^{-1} \Omega \vec S </math>
as a function of the properties of the physical memristive network and the external sources. The equation is valid for the case of the Williams-Strukov original toy model, as in the case of ideal memristors, <math>\alpha=0</math>. However, the hypothesis of the existence of an ideal memristor is debatable.<ref>{{Cite journal |last=Abraham |first=Isaac |date=2018-07-20 |title=The case for rejecting the memristor as a fundamental circuit element |journal=Scientific Reports |language=en |volume=8 |issue=1 |
It has been recently shown that the equation above exhibits tunneling phenomena and used to study [[Lyapunov
===Neuromorphic sensors===
The concept of neuromorphic systems can be extended to [[Sensor|sensors]] (not just to computation). An example of this applied to detecting [[light]] is the [[retinomorphic sensor]] or, when employed in an array, the [[event camera]]. An event camera's pixels all register changes in brightness levels individually, which makes these cameras comparable to human eyesight in their theoretical power consumption.<ref>{{Cite journal |last=Skorka |first=Orit |date=2011-07-01 |title=Toward a digital camera to rival the human eye |url=http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3611015 |journal=Journal of Electronic Imaging |language=en |volume=20 |issue=3 |pages=033009–033009–18 |doi=10.1117/1.3611015 |bibcode=2011JEI....20c3009S |issn=1017-9909|url-access=subscription }}</ref> In 2022, researchers from the [[Max Planck Institute for Polymer Research]] reported an organic artificial spiking neuron that exhibits the signal diversity of biological neurons while operating in the biological wetware, thus enabling ''in-situ'' neuromorphic sensing and biointerfacing applications.<ref>{{cite journal |last1=Sarkar |first1=Tanmoy |last2=Lieberth |first2=Katharina |last3=Pavlou |first3=Aristea |last4=Frank |first4=Thomas |last5=Mailaender |first5=Volker |last6=McCulloch |first6=Iain |last7=Blom |first7=Paul W. M. |last8=Torriccelli |first8=Fabrizio |last9=Gkoupidenis |first9=Paschalis |title=An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing |journal=Nature Electronics |date=7 November 2022 |volume=5 |issue=11 |pages=774–783 |doi=10.1038/s41928-022-00859-y |s2cid=253413801 |language=en |issn=2520-1131|doi-access=free |hdl=10754/686016 |hdl-access=free }}</ref><ref>{{cite journal |title=Artificial neurons emulate biological counterparts to enable synergetic operation |journal=Nature Electronics |date=10 November 2022 |volume=5 |issue=11 |pages=721–722 |doi=10.1038/s41928-022-00862-3 |s2cid=253469402 |url=https://www.nature.com/articles/s41928-022-00862-3 |language=en |issn=2520-1131|url-access=subscription }}</ref>
=== Military applications ===
Line 70 ⟶ 74:
=== Social concerns ===
Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030
The social concerns surrounding neuromorphic engineering are likely to become even more profound in the future. The European Commission found that EU citizens between the ages of 15 and 24 are more likely to think of robots as human-like (as opposed to instrument-like) than EU citizens over the age of 55. When presented an image of a robot that had been defined as human-like, 75% of EU citizens aged 15–24 said it corresponded with the idea they had of robots while only 57% of EU citizens over the age of 55 responded the same way. The human-like nature of neuromorphic systems, therefore, could place them in the categories of robots many EU citizens would like to see banned in the future.<ref name=":1" />
=== Personhood ===
As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. Daniel Lim, a critic of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, has argued that advancement in neuromorphic computing could lead to [[Machine Consciousness|machine consciousness]] or
=== Ownership and property rights ===
Line 91 ⟶ 95:
* [[Hardware for artificial intelligence]]
* [[Lithionics]]
* [[Neuromorphic Olfaction Systems]]
* [[Neurorobotics]]
* [[Optical flow sensor]]
Line 123 ⟶ 128:
| and link back to that category using the {{dmoz}} template. |
======================={{No more links}}=============================-->
{{Commons category|Neuromorphic
*[https://web.archive.org/web/20150727034331/http://ine-web.org/workshops/workshops-overview Telluride Neuromorphic Engineering Workshop]
*[https://archive.today/20130115190057/http://capocaccia.ethz.ch/ CapoCaccia Cognitive Neuromorphic Engineering Workshop]
Line 130 ⟶ 135:
*[http://www.frontiersin.org/neuromorphic_engineering Frontiers in Neuromorphic Engineering Journal]
*[http://www.cns.caltech.edu/ Computation and Neural Systems] department at the [[California Institute of Technology]].
*
▲* [https://www.the-scientist.com/features/building-a-silicon-brain-65738 Building a Silicon Brain:] Computer chips based on biological neurons may help simulate larger and more-complex brain models. May 1, 2019. SANDEEP RAVINDRAN
{{Neuroscience}}
{{Differentiable computing}}
Line 138 ⟶ 142:
[[Category:Electrical engineering]]
[[Category:Neuroscience]]
[[Category:
[[Category:Robotics engineering]]
|