Content deleted Content added
→Properties: proper |
|||
(24 intermediate revisions by 8 users not shown) | |||
Line 1:
{{Short description|Function that is discontinuous at rationals and continuous at irrationals}}
{{CS1 config|mode=cs1}}
[[File:Thomae function (0,1).svg|200px|right|thumb|Point plot on the [[interval (mathematics)|interval]] (0,1). The topmost point in the middle shows ''f''(1/2) = 1/2.]]
'''Thomae's function''' is a [[real number|real]]-valued [[function (mathematics)|function]] of a real variable that can be defined as:<ref name="Beanland">{{
<math display="block">f(x) =
\begin{cases}
Line 9 ⟶ 10:
\end{cases}</math>
It is named after [[Carl Johannes Thomae]], but has many other names: the '''popcorn function''', the '''raindrop function''', the '''countable cloud function''', the '''modified [[Dirichlet function]]''', the '''ruler function''' (not to be confused with the integer [[ruler function]]),<ref>{{
Since every [[rational number]] has a unique representation with [[coprime integers|coprime]] (also termed relatively prime) <math>p \in \mathbb Z</math> and <math>q \in \mathbb N</math>, the function is [[well-defined]]. Note that <math>q = +1</math> is the only number in <math>\mathbb N</math> that is coprime to <math>p = 0.</math>
Line 78 ⟶ 79:
* For rational numbers, this follows from non-continuity.
* For irrational numbers:
*:For any [[sequence]] of irrational numbers <math>(a_n)_{n=1}^\infty</math> with <math>a_n \ne x_0</math> for all <math>n \in \mathbb{N}_{+}</math> that converges to the irrational point <math>x_0
*:
*: Thus for all <math>n
{{Collapse bottom}}
|<math>f</math> has a
{{pb}}
See the proofs for continuity and discontinuity above for the construction of appropriate [[neighborhood (mathematics)|neighbourhoods]], {{nowrap|where <math>f</math> has}} maxima.
Line 89 ⟶ 90:
|<math>f</math> is '''[[Riemann integrable]]''' on any interval and the integral evaluates to <math>0</math> over any set.
{{pb}}
The [[Lebesgue integrability condition|Lebesgue criterion for integrability]] states that a bounded function is Riemann integrable if and only if the set of all discontinuities has [[Lebesgue measure|measure zero]].<ref>{{
|If <math>G = \{ \, (x,f(x)) : x \in (0,1) \, \} \subset \mathbb{R}^2</math> is the graph of the restriction of <math>f</math> to <math>(0,1)</math>, then the [[Minkowski–Bouligand dimension|'''box-counting dimension''']] of <math>G</math> is <math>4/3</math>.<ref>{{cite journal |last1=Chen |first1=Haipeng |last2=Fraser |first2=Jonathan M. |last3=Yu |first3=Han |year=2022 |title=Dimensions of the popcorn graph |journal=[[Proceedings of the American Mathematical Society]] |volume=150 |number=11 |pages=4729–4742 |doi=10.1090/proc/15729 |arxiv=2007.08407}}</ref>
Line 98 ⟶ 99:
If pairs of positive integers <math>m, n</math> are sampled from a distribution <math>f(n,m)</math> and used to generate ratios <math>q=n/(n+m)</math>, this gives rise to a distribution <math>g(q)</math> on the rational numbers. If the integers are independent the distribution can be viewed as a [[convolution]] over the rational numbers, <math display="inline">g(a/(a+b)) = \sum_{t=1}^\infty f(ta)f(tb)</math>. Closed form solutions exist for [[power-law]] distributions with a cut-off. If <math>f(k) =k^{-\alpha} e^{-\beta k}/\mathrm{Li}_\alpha(e^{-\beta})</math> (where <math>\mathrm{Li}_\alpha</math> is the [[polylogarithm]] function) then <math>g(a/(a+b)) = (ab)^{-\alpha} \mathrm{Li}_{2\alpha}(e^{-(a+b)\beta})/\mathrm{Li}^2_{\alpha}(e^{-\beta})</math>. In the case of uniform distributions on the set <math>\{1,2,\ldots , L\}</math> <math>g(a/(a+b)) = (1/L^2) \lfloor L/\max(a,b) \rfloor</math>, which is very similar to Thomae's function.<ref name="Trifonov" />
==The ruler function==
Line 128 ⟶ 126:
==References==
{{reflist}}
==Further reading==
{{refbegin}}
*{{citation|last=Abbott |first=Stephen |year=2016 |title=Understanding Analysis |edition=Softcover reprint of the original 2nd |publisher=[[Springer Science+Business Media|Springer]] |___location=New York |isbn=978-1-4939-5026-3}}
Line 139:
[[Category:Calculus]]
[[Category:Eponymous functions]]
[[Category:Fractals]]
[[Category:General topology]]
[[Category:Special functions]]
|