Pohlig–Hellman algorithm: Difference between revisions

Content deleted Content added
the requested citation is the original one by Pohlig and Hellman, already listed in the references
Add one more link to Chinese remainder theorem
 
(One intermediate revision by one other user not shown)
Line 34:
:# Solve the simultaneous congruence <math display="block">x\equiv x_i\pmod{p_i^{e_i}}
\quad\forall i\in\{1,\dots,r\}
\text{.}</math>The [[Chinese remainder theorem]] guarantees there exists a unique solution <math>x\in\{0,\dots,n-1\}</math>.
:# Return <math>x</math>.
The correctness of this algorithm can be verified via the [[Abelian group#Classification|classification of finite abelian groups]]: Raising <math>g</math> and <math>h</math> to the power of <math>n/p_i^{e_i}</math> can be understood as the projection to the factor group of order <math>p_i^{e_i}</math>.
Line 46:
==References==
*{{cite book|title=An Introduction To Cryptography|url=https://archive.org/details/An_Introduction_to_Cryptography_Second_Edition|last=Mollin|first= Richard|date=2006-09-18|publisher=Chapman and Hall/CRC|edition=2nd|isbn=978-1-58488-618-1|page=[https://archive.org/details/An_Introduction_to_Cryptography_Second_Edition/page/n353 344]|ref=Mollin06}}
*{{cite journal |author1first1=S. |last1=Pohlig |author2-link=[[Martin Hellman|first2=M. |last2=Hellman]] | title=An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance | journal=IEEE Transactions on Information Theory | issue=24 | year=1978 | pages=106–110 | doi=10.1109/TIT.1978.1055817 | url=http://www-ee.stanford.edu/~hellman/publications/28.pdf}}
*{{cite book|first1=Alfred J.|last1=Menezes|author-link1=Alfred Menezes|first2=Paul C.|last2=van Oorschot|author-link2=Paul van Oorschot|first3=Scott A.|last3=Vanstone|author-link3=Scott Vanstone|title=Handbook of Applied Cryptography|url=https://archive.org/details/handbookofapplie0000mene/page/107|publisher=[[CRC Press]]|year=1997|pages=[https://archive.org/details/handbookofapplie0000mene/page/107 107–109]|chapter=Number-Theoretic Reference Problems|chapter-url=http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf|isbn=0-8493-8523-7|ref=Menezes97|url-access=registration}}