Content deleted Content added
m links |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Short description|Concept in algebraic geometry}}
{{redirect-distinguish2|Kodaira map|[[Kodaira–Spencer map]] from cohomology theory}}
[[File:Apollonian circles.svg|thumb|A '''linear system of divisors''' algebraicizes the classic geometric notion of a [[family of curves]], as in the [[Apollonian circles]].]]
Line 33 ⟶ 34:
==== Hyperelliptic curves ====
One application of linear systems is used in the classification of algebraic curves. A [[hyperelliptic curve]] is a curve <math>C</math> with a [[Degree of a finite morphism|
==== g<sub>
A <math>
===Linear systems of hypersurfaces in a projective space===
Line 97 ⟶ 98:
:<math>f: X \to \mathbb{P}(V^*).</math>
When the base locus of ''V'' is not empty, the above discussion still goes through with <math>\mathcal{O}_X</math> in the direct sum replaced by an [[ideal sheaf]] defining the base locus and ''X'' replaced by the [[blowing up|blow-up]] <math>\widetilde{X}</math> of it along the (scheme-theoretic) base locus ''B''. Precisely, as above, there is a surjection <math>\operatorname{Sym}((V \otimes_k \mathcal{O}_X) \otimes_{\mathcal{O}_X} L^{-1}) \to \bigoplus_{n=0}^{\infty} \mathcal{I}^n</math> where <math>\mathcal{I}</math> is the ideal sheaf of ''B'' and that gives rise to
:<math>i: \widetilde{X} \hookrightarrow \mathbb{P}(V^*) \times X.</math>
Since <math>X - B \simeq</math> an open subset of <math>\widetilde{X}</math>, there results in the map:
|