Content deleted Content added
RowanElder (talk | contribs) m Removed comma splice |
Tito Omburo (talk | contribs) →Generalizations: compact case |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 34:
:<math>d(x_{n+1}, x_n) \le q^n d(x_1, x_0).</math>
This follows by [[Principle of mathematical induction|induction]] on
: <math>\begin{align}
Line 44:
\end{align}</math>
Let
:<math>q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.</math>
Line 52:
:<math>d(x_m, x_n) \leq q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ) < \left (\frac{\varepsilon(1-q)}{d(x_1, x_0)} \right ) d(x_1, x_0) \left ( \frac{1}{1-q} \right ) = \varepsilon.</math>
This proves that the sequence <math>(x_n)_{n\in\mathbb N}</math> is Cauchy. By completeness of <math>(
:<math>x^*=\lim_{n\to\infty} x_n = \lim_{n\to\infty} T(x_{n-1}) = T\left(\lim_{n\to\infty} x_{n-1} \right) = T(x^*). </math>
As a contraction mapping,
:<math> d(T(p_1),T(p_2)) = d(p_1,p_2) > q d(p_1, p_2).</math>
Line 88:
:Then ''T'' has a unique fixed point.
In applications, the existence and uniqueness of a fixed point often can be shown directly with the standard Banach fixed point theorem, by a suitable choice of the metric that makes the map ''T'' a contraction. Indeed, the above result by Bessaga strongly suggests to look for such a metric. See also the article on [[fixed point theorems in infinite-dimensional spaces]] for generalizations.
In a non-empty [[compact metric space]], any function <math>T</math> satisfying <math>d(T(x),T(y))<d(x,y)</math> for all distinct <math>x,y</math>, has a unique fixed point. The proof is simpler than the Banach theorem, because the function <math>d(T(x),x)</math> is continuous, and therefore assumes a minimum, which is easily shown to be zero.
A different class of generalizations arise from suitable generalizations of the notion of [[metric space]], e.g. by weakening the defining axioms for the notion of metric.<ref>{{cite book |first1=Pascal |last1=Hitzler | author-link1=Pascal Hitzler|first2=Anthony |last2=Seda |title=Mathematical Aspects of Logic Programming Semantics |publisher=Chapman and Hall/CRC |year=2010 |isbn=978-1-4398-2961-5 }}</ref> Some of these have applications, e.g., in the theory of programming semantics in theoretical computer science.<ref>{{cite journal |first1=Anthony K. |last1=Seda |first2=Pascal |last2=Hitzler | author-link2=Pascal Hitzler|title=Generalized Distance Functions in the Theory of Computation |journal=The Computer Journal |volume=53 |issue=4 |pages=443–464 |year=2010 |doi=10.1093/comjnl/bxm108 }}</ref>
Line 131 ⟶ 133:
{{PlanetMath attribution |urlname=banachfixedpointtheorem |title=Banach fixed point theorem }}
{{Metric spaces}}
{{Topology}}
|