Nonnegative matrix: Difference between revisions

Content deleted Content added
m fixed lint errors – missing end tag
Citation bot (talk | contribs)
Add: authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Matrices (mathematics) | #UCB_Category 158/234
 
(3 intermediate revisions by 3 users not shown)
Line 1:
{{Short description|Matrix whosewith elementsno arenegative all ≥0elements}}
{{hatnote|Not to be confused with [[Totally positive matrix]] and [[Positive-definite matrix]].}}
 
Line 28:
== Bibliography ==
{{refbegin}}
* {{cite book |firstfirst1=Abraham |lastlast1=Berman |first2=Robert J. |last2=Plemmons |author2-link=Robert J. Plemmons |title=Nonnegative Matrices in the Mathematical Sciences |publisher=SIAM |date=1994 |isbn=0-89871-321-8 |doi=10.1137/1.9781611971262}}
*{{harvnb|Berman|Plemmons|1994|loc=2. Nonnegative Matrices pp. 26–62. {{DOIdoi|10.1137/1.9781611971262.ch2}}}}
*{{cite book |firstfirst1=R.A. |lastlast1=Horn |first2=C.R. |last2=Johnson |chapter=8. Positive and nonnegative matrices |title=Matrix Analysis |publisher=Cambridge University Press |edition=2nd |date=2013 |isbn=978-1-139-78203-6 |oclc=817562427 }}
* {{cite book| last = Krasnosel'skii
| first = M. A.
Line 53:
* {{cite book |author-link=Eugene Seneta |first=E. |last=Seneta |title=Non-negative matrices and Markov chains |publisher=Springer |series=Springer Series in Statistics |edition=2nd |date=1981 |isbn=978-0-387-29765-1 |oclc=209916821 |doi=10.1007/0-387-32792-4}}
* {{cite book |author-link=Richard S. Varga |first=R.S. |last=Varga |chapter=Nonnegative Matrices |chapter-url=https://link.springer.com/chapter/10.1007/978-3-642-05156-2_2 |doi=10.1007/978-3-642-05156-2_2 |title=Matrix Iterative Analysis |publisher=Springer |series=Springer Series in Computational Mathematics |volume=27 |date=2009 |isbn=978-3-642-05156-2 |pages=31–62 }}
* Andrzej Cichocki; Rafel Zdunek; Anh Huy Phan; Shun-ichi Amari: ''Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation'', John Wiley & Sons,ISBN 978-0-470-74666-0 (2009).
{{refend}}
 
{{Matrix classes}}
 
[[Category:Matrices (mathematics)]]