Carmichael function: Difference between revisions

Content deleted Content added
Removed superfluous wording from first sentence. Having "member of the set of positive integers" adds no clarity to the simpler "positive integer".
Owen Reich (talk | contribs)
Link suggestions feature: 3 links added.
 
(4 intermediate revisions by 4 users not shown)
Line 1:
{{Short description|Function in mathematical number theory}}
[[File:carmichaelLambda.svg|thumb|upright=2|Carmichael {{mvar | λ}} function: {{math | ''λ''(''n'')}} for {{math | 1 ≤ ''n'' ≤ 1000}} (compared to Euler {{mvar | φ}} function)]]
In [[number theory]], a branch of [[mathematics]], the '''Carmichael function''' {{math | ''λ''(''n'')}} of a [[positive integer]] {{mvar | n}} is the smallest positive integer {{mvar|m}} such that
:<math>a^m \equiv 1 \pmod{n}</math>
holds for every integer {{mvar | a}} [[coprime]] to {{mvar | n}}. In algebraic terms, {{math | ''λ''(''n'')}} is the [[exponent of a group|exponent]] of the [[multiplicative group of integers modulo n|multiplicative group of integers modulo {{mvar | n}}]]. As this is a [[Abelian group#Finite abelian groups|finite abelian group]], there must exist an element whose [[Cyclic group#Definition and notation|order]] equals the exponent, {{math | ''λ''(''n'')}}. Such an element is called a '''primitive {{math | ''λ''}}-root modulo {{mvar | n}}'''.
 
[[File:carmichaelLambda.svg|thumb|upright=2|Carmichael {{mvar | λ}} function: {{math | ''λ''(''n'')}} for {{math | 1 ≤ ''n'' ≤ 1000}} (compared to Euler {{mvar | φ}} function)|none]]
 
The Carmichael function is named after the American mathematician [[Robert Daniel Carmichael|Robert Carmichael]] who defined it in 1910.<ref>
Line 9 ⟶ 10:
</ref> It is also known as '''Carmichael's λ function''', the '''reduced totient function''', and the '''least universal exponent function'''.
 
The order of the multiplicative group of integers modulo {{mvar | n}} is {{math | ''φ''(''n'')}}, where {{mvar | φ}} is [[Euler's totient function]]. Since the order of an element of a finite group divides the order of the group, {{math | ''λ''(''n'')}} divides {{math | ''φ''(''n'')}}. The following table compares the first 36 values of {{math | ''λ''(''n'')}} {{OEIS|id=A002322}} and {{math | ''φ''(''n'')}} (in '''bold''' if they are different; the values of{{mvar | n}}s such that they are different are listed in {{oeis|A033949}}).
 
{| class="wikitable" style="text-align: center;"
Line 59 ⟶ 60:
 
==Numerical examples==
* {{math | ''n'' {{=}} 5}}. The set of numbers less than and coprime to 5 is {{math | {1,2,3,4}}}. Hence Euler's totient function has value {{math | ''φ''(5) {{=}} 4}} and the value of Carmichael's function, {{math | ''λ''(5)}}, must be a [[divisor]] of 4. The divisor 1 does not satisfy the definition of Carmichael's function since <math>a^1 \not\equiv 1\pmod{5}</math> except for <math>a\equiv1\pmod{5}</math>. Neither does 2 since <math>2^2 \equiv 3^2 \equiv 4 \not\equiv 1\pmod{5}</math>. Hence {{math | ''λ''(5) {{=}} 4}}. Indeed, <math>1^4\equiv 2^4\equiv 3^4\equiv 4^4\equiv1\pmod{5}</math>. Both 2 and 3 are primitive {{mvar | λ}}-roots modulo 5 and also [[Primitive root modulo n|primitive roots]] modulo 5.
* {{math | ''n'' {{=}} 8}}. The set of numbers less than and coprime to 8 is {{math | {1,3,5,7} }}. Hence {{math | ''φ''(8) {{=}} 4}} and {{math | ''λ''(8)}} must be a divisor of 4. In fact {{math | ''λ''(8) {{=}} 2}} since <math>1^2\equiv 3^2\equiv 5^2\equiv 7^2\equiv1\pmod{8}</math>. The primitive {{mvar | λ}}-roots modulo 8 are 3, 5, and 7. There are no primitive roots modulo 8.
 
== Recurrence for {{math | ''λ''(''n'')}} ==
The Carmichael lambda function of a [[prime power]] can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case {{mvar | λ}} of the product is the [[least common multiple]] of the {{mvar | λ}} of the prime power factors. Specifically, {{math | ''λ''(''n'')}} is given by the recurrence
:<math>\lambda(n) = \begin{cases}
\varphi(n) & \text{if }n\text{ is 1, 2, 4, or an odd prime power,}\\
Line 75 ⟶ 76:
{{anchor|Carmichael's theorem}}
Carmichael proved two theorems that, together, establish that if {{math | ''λ''(''n'')}} is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer {{mvar | m}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
{{Math theorem |name=Theorem 1|math_statement=If {{mvar | a}} is relatively prime to {{mvar | n}} then <math>a^{\lambda(n)}\equiv 1\pmod{n}</math>.<ref>CarmichaaelCarmichael (1914) p.40</ref>}}
This implies that the order of every element of the multiplicative group of integers modulo {{mvar | n}} divides {{math | ''λ''(''n'')}}. Carmichael calls an element {{mvar | a}} for which <math>a^{\lambda(n)}</math> is the least power of {{mvar | a}} congruent to 1 (mod {{mvar | n}}) a ''primitive λ-root modulo n''.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo {{mvar | n}}]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo {{mvar | n}}.)
{{Math theorem |name=Theorem 2|math_statement=For every positive integer {{mvar | n}} there exists a primitive {{mvar | λ}}-root modulo {{mvar | n}}. Moreover, if {{mvar | g}} is such a root, then there are <math>\varphi(\lambda(n))</math> primitive {{mvar | λ}}-roots that are congruent to powers of {{mvar | g}}.<ref>Carmichael (1914) p.55</ref>}}
Line 243 ⟶ 244:
 
==Proof of Theorem 1==
For {{math | ''n'' {{=}} ''p''}}, a prime, Theorem 1 is equivalent to [[Fermat's little theorem]]:
:<math>a^{p-1}\equiv1\pmod{p}\qquad\text{for all }a\text{ coprime to }p.</math>
For prime powers {{math | ''p''<sup>''r''</sup>}}, {{math | ''r'' > 1}}, if