Numero irrazionale: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m refuso |
Annullata la modifica 142613008 di Stefano Borelli (discussione) meglio la congiunzione Etichetta: Annulla |
||
| (8 versioni intermedie di 6 utenti non mostrate) | |||
Riga 1:
In [[matematica]], un '''numero irrazionale''' è un [[numero reale]] che non è un [[numero razionale]], cioè non può essere scritto come una [[frazione (matematica)|frazione]] ''a / b'' con ''a'' e ''b'' [[numeri interi|interi]] e ''b'' diverso da [[zero|0]]. I numeri irrazionali sono esattamente quei numeri la cui
L'introduzione di questi numeri nel panorama matematico è iniziata con la scoperta da parte dei greci delle grandezze incommensurabili, ossia prive di un sottomultiplo comune.
Riga 18:
=== Irrazionalità della radice quadrata di 2 ===
Una dimostrazione dell'irrazionalità della [[radice quadrata di due]] (trasmessa da [[Archita]]) è la seguente, che procede [[Dimostrazione per assurdo|per assurdo]]
Supponiamo che <math>\sqrt{2}</math> sia un numero razionale. Ciò comporta che esistono due interi ''a'' e ''b'' [[interi coprimi|privi di fattori comuni]] tali che <math>\frac{a}{b} = \sqrt{2}</math>. Elevando al quadrato ad ambo i membri, si ha <math>\frac{a^2}{b^2} =2</math>, cioè <math>a^2=2b^2</math>.
Questo implica che
Poiché il quadrato di un [[Numeri pari e dispari|numero pari]] è pari (<math>(2k)^2=2(2k^2)</math>), mentre il quadrato di un numero dispari è dispari (<math>(2k+1)^2=2(2k^2+2k)+1</math>), ne deriva che ''a'' è pari, ossia esiste ''k'' intero tale che ''a''=2''k''.
Sostituendo abbiamo
:<math>a^2=(2k)^2=4k^2=2b^2 \Longrightarrow b^2=2k^2</math>
cioè risulta che anche ''b'' è pari
Questa dimostrazione si può generalizzare per dimostrare che qualunque radice di qualunque [[numero naturale]] è un numero naturale o è irrazionale.
Un'altra dimostrazione per assurdo che dimostra l'irrazionalità di <math>\sqrt 2</math> è meno conosciuta ma interessante. Essa procede osservando che se <math>\sqrt 2 = \frac{m}{n}</math> allora sfruttando il fatto che <math>2 = \frac{m^2}{n^2}</math> si ottiene <math>\sqrt 2 = \frac{2n - m}{m - n}</math>, quindi una frazione ai minimi termini viene ridotta in termini ancora minori. Questa è una contraddizione se <math>n</math> e <math>m</math> sono interi positivi, dunque l'assunzione che <math>\sqrt 2</math> sia razionale deve essere falsa. Da un [[triangolo rettangolo]] isoscele di cui i [[Cateto|cateti]] e l'[[ipotenusa]] abbiano rispettivamente lunghezze <math>n</math> e <math>m</math>, tramite una classica costruzione con riga e compasso, è possibile costruire un [[triangolo isoscele]] rettangolo più piccolo tale che i cateti e l'ipotenusa abbiano rispettivamente lunghezze <math>m - n</math> e <math>2n - m</math>. Questa costruzione dimostra l'irrazionalità di <math>\sqrt 2</math> con lo stesso tipo di metodo che fu impiegato dagli antichi geometri greci.
=== Irrazionalità dei logaritmi ===
Riga 74:
== Numeri irrazionali ed espansioni decimali ==
Spesso si crede che i matematici definiscano "numero irrazionale" in termini di [[espansione decimale]], chiamando un numero ''irrazionale'' se la sua espansione decimale non si ripete né termina. Nessun matematico utilizza tale definizione, in quanto la scelta della [[Sistema di numerazione|base 10]] sarebbe arbitraria e la definizione tipica è più semplice e più motivata. Tuttavia è vero che un numero razionale si può esprimere nella forma <math>n /m</math>, dove <math>n</math> ed <math>m</math> sono [[Numero intero|interi]], [[se e solo se]] la sua espansione decimale si ripete o è finita. Quando l'[[algoritmo di divisione]] ("in colonna") viene applicato alla divisione di <math>n</math> per <math>m</math>, sono possibili solo <math>m</math> [[Resto|resti]]. Se <math>0</math> appare come resto, l'espansione decimale si conclude. Se <math>0</math> non compare, allora l'algoritmo può richiedere al massimo <math>m - 1</math> passi senza usare ogni resto più di una volta. Dopodiché, un resto deve ricomparire, e quindi l'espansione decimale si ripete. Al contrario, supponiamo di essere di fronte ad un decimale periodico, ad esempio:
:<math>A=0,7\,162\,162\,162\,\dots</math>
Riga 100:
== Numeri di cui non è accertata l'irrazionalità ==
{{senza fonte|Non si sa ancora se <math>\pi + e</math> o <math>\pi - e</math> siano irrazionali o no. Infatti, non c'è nessuna coppia di interi non nulli
== Topologia ==
Riga 114:
== Altri progetti ==
{{interprogetto|preposizione=sui|etichetta=numeri irrazionali}}
== Collegamenti esterni ==
* {{Collegamenti esterni}}
* {{FOLDOC|irrational number|irrational number}}
{{algebra}}
| |||