Content deleted Content added
Formatted the references |
m Open access bot: url-access updated in citation with #oabot. |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|Subfield of machine learning}}
'''Preference learning''' is a subfield of [[machine learning]] that focuses on modeling and predicting preferences based on observed preference information.<ref>{{Cite Mehryar Afshin Ameet 2012}}</ref> Preference learning typically involves [[supervised learning]] using datasets of pairwise preference comparisons, rankings, or other preference information.
==Tasks==
The main task in preference learning concerns problems in "[[learning to rank]]". According to different types of preference information observed, the tasks are categorized as three main problems in the book ''Preference Learning'':<ref>{{Cite book |url=https://books.google.
===Label ranking===
Line 27 ⟶ 28:
If we can find a mapping from data to real numbers, ranking the data can be solved by ranking the real numbers. This mapping is called [[utility function]]. For label ranking the mapping is a function <math>f: X \times Y \rightarrow \mathbb{R}\,\!</math> such that <math>y_i \succ_x y_j \Rightarrow f(x,y_i) > f(x,y_j)\,\!</math>. For instance ranking and object ranking, the mapping is a function <math>f: X \rightarrow \mathbb{R}\,\!</math>.
Finding the utility function is a [[Regression analysis|regression]] learning problem{{citation needed|date=March 2025}} which is well developed in machine learning.
===Preference relations===
The binary representation of preference information is called preference relation. For each pair of alternatives (instances or labels), a binary predicate can be learned by conventional
Using preference relations to predict the ranking will not be so intuitive. Since observed preference relations may not always be transitive due to inconsistencies in the data, finding a ranking that satisfies all the preference relations may not be possible or may result in multiple possible solutions. A more common approach is to find a ranking solution which is maximally consistent with the preference relations. This approach is a natural extension of pairwise classification.<ref name=":0" />
Line 37 ⟶ 38:
==Uses==
Preference learning can be used in ranking search results according to feedback of user preference. Given a query and a set of documents, a learning model is used to find the ranking of documents corresponding to the [[relevance (information retrieval)|relevance]] with this query. More discussions on research in this field can be found in [[Tie-Yan Liu]]'s survey paper.<ref>{{Cite journal |last=Liu |first=Tie-Yan |date=2007 |title=Learning to Rank for Information Retrieval |url=http://www.nowpublishers.com/article/Details/INR-016 |journal=Foundations and Trends
Another application of preference learning is [[recommender systems]].<ref>{{Citation |
==References==
{{Reflist}}
[[Category:Information retrieval techniques]]
|