Invarianza di scala: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m aggiunta Categoria:Teoria dei campi conforme usando HotCat |
Funzionalità collegamenti suggeriti: 1 collegamento inserito. |
||
(9 versioni intermedie di 6 utenti non mostrate) | |||
Riga 1:
[[Image:Wiener process animated.gif|thumb|upright=2.3|Un [[processo di Wiener]]
In [[fisica]] e [[matematica]], l''''invarianza di scala''' è una caratteristica degli oggetti o una [[legge fisica
* In matematica, l'invarianza di scala spesso si riferisce all'invarianza di una singola [[funzione (matematica)|funzione]] o [[curva (matematica)|curva]]. Un concetto strettamente correlato è l'auto-similarità, dove la funzione o la curva in questione è invariante rispetto a un sottoinsieme discreto delle dilatazioni. È anche possibile che le [[Distribuzione di probabilità|distribuzioni di probabilità]] di un [[processo stocastico|processo casuale]] ammettano questo tipo di invarianza di scala o [[auto similarità]] (si veda per esempio il [[moto browniano]]).
Riga 25:
:<math>\theta = \frac{1}{b} \ln(r/a).</math>
Considerando rotazioni della curva, l'invarianza si manifesta riscalando l'angolo, <math>\theta(\lambda r)</math>
===Geometria proiettiva===
Riga 31:
L'idea di una invarianza di scala dei monomi si generalizza in un numero maggiore di dimensioni all'idea dei polinomi omogenei e più genericamente alle funzioni omogenee. Le funzioni omogenee sono la base naturale degli spazi proiettivi e i polinomi omogenei sono studiati come varietà proiettive in geometria proiettiva. La [[geometria proiettiva]] è un campo particolarmente fertile della matematica; nella sua forma più astratta, la geometria degli schemi, ha svariate connessioni con la [[teoria delle stringhe]].
[[Image:Kochsim.gif|thumb|La [[curva di Koch]] è [[auto similarità|auto similare]]
===Frattali===
Spesso comunemente i [[Frattale|frattali]] sono indicati come oggetti invarianti di scala sebbene sarebbe più corretto dire che sono piuttosto [[Auto similarità|auto-similari]]. Un frattale è uguale a se stesso tipicamente
Alcuni frattali possono avere sequenze differenti di valori di invarianza di scala che sono studiate con l'analisi multifrattale.
Riga 50:
===Cosmologia===
Nella [[cosmologia (astronomia)|cosmologia]], lo spettro di potenza della distribuzione spaziale della radiazione di fondo cosmica è prossima ad essere una distribuzione invariante di scala. Sebbene in matematica questo significhi che lo spettro esibisce una [[legge di potenza]], in cosmologia il termine "invariante di scala" indica che l'ampiezza, ''P''(''k''), delle fluttuazioni primordiali come funzione del [[numero d'onda]], ''k'', è approssimativamente costante, cioè uno spettro piatto. Questo tipo di spettro è consistente con i modelli [[Inflazione (cosmologia)|inflativi]].
==Invarianza di scala nelle teorie quantistiche dei campi==
La dipendenza dalla scala di una [[teoria
Per avere una teoria QFT invariante di scala, le sue costanti di accoppiamento devono essere indipendenti dalla scala di energia e questo è indicato dall'annullarsi della funzione beta della teoria. Queste teorie sono note come [[punto fisso|punti fissi]] del corrispondente flusso del gruppo di rinormalizzazione.
Riga 59:
===Elettrodinamica quantistica===
Un semplice esempio di teoria di campo quantistica invariante di scala è il [[campo elettromagnetico]] libero quantizzato senza alcuna particella carica. Questa teoria, come il suo corrispettivo classico, è invariante di scala semplicemente dato che non contiene al suo interno alcuna costante di accoppiamento (né con le assenti particelle cariche, né con gli stessi [[Fotone|fotoni]] dato che questi non interagiscono direttamente tra di loro).
Tuttavia in natura il campo elettromagnetico è accoppiato con le particelle cariche, come per esempio gli [[elettrone|elettroni]] o i [[positrone|positroni]]. La teoria quantistica che descrive sia i campi fermionici degli elettroni sia quelli elettromagnetici è nota come [[elettrodinamica quantistica]] (QED) e non è una teoria invariante di scala. Analizzando la funzione beta della QED, si ricava che la [[carica elettrica]] (che è il parametro di accoppiamento della teoria) cresce al crescere dell'energia . Quindi, mentre il campo elettromagnetico quantizzato senza particelle cariche '''è''' invariante di scala, la QED '''non''' è invariante di scala.
===Teorie di campo scalari prive di massa===
Riga 73:
===Teoria dei campi conforme===
Le teorie quantistiche invarianti di scala sono quasi sempre invarianti sotto l'azione di tutto il [[gruppo conforme]] e lo studio di queste teorie è noto come [[teoria dei campi conforme]] (CFT). Alcuni operatori nella CFT hanno delle ben definite dimensioni di scala, analoghe alla potenza <math>\Delta</math> dei casi precedenti. Tuttavia le dimensioni di scala degli operatori in una teoria CFT differiscono tipicamente da quelle classiche a causa di contributi quantistici noti come dimensioni di scala anomale.
==Transizioni di fase==
|