Lambda-CDM model: Difference between revisions

Content deleted Content added
m Extended models: fix error introduced in previous edit, where table was moved to the beginning of the section
 
(45 intermediate revisions by 24 users not shown)
Line 15:
* the [[accelerating expansion of the universe]] observed in the light from distant [[Galaxy|galaxies]] and [[supernova]]e.
 
The model assumes that [[general relativity]] is the correct theory of gravity on cosmological scales. It emerged in the late 1990s as a '''concordance cosmology''', after a period of time when disparate observed properties of the universe appeared mutually inconsistent, and there was no consensus on the makeup of the energy density of the universe.
 
The ΛCDM model has been successful in modeling a broad collection of astronomical observations over decades. Remaining issues havechallenge leadthe toassumptions manyof alternativethe modelsΛCDM model and challengeshave theled assumptionsto ofmany thealternative ΛCDM modelmodels.<ref name="Snowmass21"/>
 
== Overview ==
The ΛCDM model is based on three postulates on the structure of [[spacetime]]:<ref name="Longair-2009">{{Cite book|date=2008 |title=Galaxy Formation
|author=Malcolm S. Longair
|url=http://link.springer.com/10.1007/978-3-540-73478-9 |series=Astronomy and Astrophysics Library |language=en |___location=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-540-73478-9 |isbn=978-3-540-73477-2}}</ref>{{rp|227}}
# The [[cosmological principle]], that the universe is the same everywhere and in all directions, and that it is expanding,
# A postulate by [[Hermann Weyl]] that the lines of spacetime ([[geodesics]]) intersect at only one point, where time along each line can be synchronized; the behavior resembles an expanding [[perfect fluid]],<ref name="Longair-2009"/>{{rp|175}}
# [[general relativity]] that relates the geometry of spacetime to the distribution of matter and energy.
This combination greatly simplifies the equations of general relativity in tointo a form called the [[Friedmann equations]]. These equations specify the evolution of the [[Scale factor (cosmology)|scale factor]] of the universe in terms of the pressure and density of a perfect fluid. The evolving density is composed of different kinds of energy and matter, each with its own role in affecting the scale factor.<ref>{{Cite book |last=White |first=Simon |title=Physics of the Early Universe: Proceedings of the Thirty Sixth Scottish Universities Summer School in Physics, Edinburgh, July 24 - August 11 1989 |date=1990 |publisher=Taylor & Francis Group |isbn=978-1-040-29413-0 |edition=1 |series=Scottish Graduate Series |___location=Milton |chapter=Physical Cosmology}}</ref>{{rp|7}} For example, a model might include [[baryons]], [[photons]], [[neutrinos]], and [[dark matter]].<ref name=PDG-2024>{{Cite journal |lastlast1=Navas |firstfirst1=S. |last2=Amsler |first2=C. |last3=Gutsche |first3=T. |last4=Hanhart |first4=C. |last5=Hernández-Rey |first5=J. J J. |last6=Lourenço |first6=C. |last7=Masoni |first7=A. |last8=Mikhasenko |first8=M. |last9=Mitchell |first9=R. E E. |last10=Patrignani |first10=C. |last11=Schwanda |first11=C. |last12=Spanier |first12=S. |last13=Venanzoni |first13=G. |last14=Yuan |first14=C. Z Z. |last15=Agashe |first15=K. |date=2024-08-01 |title=Review of Particle Physics |url=https://link.aps.org/doi/10.1103/PhysRevD.110.030001 |journal=Physical Review D |language=en |volume=110 |issue=3 |page=030001 |doi=10.1103/PhysRevD.110.030001 |issn=2470-0010|hdl=11384/149923 |hdl-access=free }}</ref>{{rp|25.1.1}} These component densities become parameters extracted when the model is constrained to match astrophysical observations. The model aims to describe the observable universe from approximately 0.1&nbsp;s to the present.<ref name=DeruelleUzan/>{{rp|605}}
 
The most accurate observations which are sensitive to the component densities are consequences of statistical inhomogeneity called "perturbations" in the early universe. Since the Friedmann equations assume homogeneity, additional theory must be added before comparison to experiments. [[Inflation (cosmology)|Inflation]] is a simple model producing perturbations by postulating an extremely rapid expansion early in the universe that separates quantum fluctuations before they can equilibrate. The perturbations are characterized by additional parameters also determined by matching observations.<ref name=PDG-2024/>{{rp|25.1.2}}
Line 30 ⟶ 32:
Finally, the light which will become astronomical observations must pass through the universe. The latter part of that journey will pass through [[reionization|ionized space]], where the electrons can scatter the light, altering the anisotropies. This effect is characterized by one additional parameter.<ref name=PDG-2024/>{{rp|25.1.3}}
 
The ΛCDM model includes an expansion of the spatial [[metricMetric spacetensor (general relativity)|metric]] that is well documented, both as the [[redshift]] of prominent spectral absorption or emission lines in the light from distant galaxies, and as the time dilation in the light decay of supernova luminosity curves. Both effects are attributed to a [[Doppler shift]] in electromagnetic radiation as it travels across expanding space. Although this expansion increases the distance between objects that are not under shared gravitational influence, it does not increase the size of the objects (e.g. galaxies) in space. Also, since it originates from ordinary general relativity, it, like general relativity, allows for distant galaxies to recede from each other at speeds greater than the speed of light; local expansion is less than the speed of light, but expansion summed across great distances can collectively exceed the speed of light.<ref name=DavisLineweaver>{{Cite journal |last1=Davis |first1=Tamara M. |last2=Lineweaver |first2=Charles H. |date=2004 |title=Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe |url=https://www.cambridge.org/core/product/identifier/S132335800000607X/type/journal_article |journal=Publications of the Astronomical Society of Australia |language=en |volume=21 |issue=1 |pages=97–109 |doi=10.1071/AS03040 |arxiv=astro-ph/0310808 |bibcode=2004PASA...21...97D |issn=1323-3580}}</ref>
 
The letter Λ ([[lambda]]) represents the [[cosmological constant]], which is associated with a vacuum energy or [[dark energy]] in empty space that is used to explain the contemporary accelerating expansion of space against the attractive effects of gravity. A cosmological constant has negative pressure, <math> p = - \rho c^{2} </math>, which contributes to the [[stress–energy tensor]] that, according to the general theory of relativity, causes accelerating expansion. The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, <math>\Omega_{\Lambda}</math>, is estimated to be 0.669 ± 0.038 based on the 2018 [[Dark Energy Survey]] results using [[Type Ia supernova]]e<ref>{{Cite journal |arxiv = 1811.02374|author=DES Collaboration |title = First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters|journal = The Astrophysical Journal|volume = 872|issue = 2|pages = L30|year = 2018|doi = 10.3847/2041-8213/ab04fa|s2cid = 84833144 |doi-access=free |bibcode=2019ApJ...872L..30A }}</ref> or {{val|0.6847|0.0073}} based on the 2018 release of [[Planck (spacecraft)|''Planck'' satellite]] data, or more than 68.3% (2018 estimate) of the mass–energy density of the universe.<ref>{{Cite journal |arxiv = 1807.06209|author=Planck Collaboration|title = Planck 2018 results. VI. Cosmological parameters|journal = Astronomy & Astrophysics|year = 2020|volume = 641|pages = A6|doi = 10.1051/0004-6361/201833910|bibcode = 2020A&A...641A...6P|s2cid = 119335614}}</ref>
Line 39 ⟶ 41:
* Cold: Its velocity is far less than the speed of light at the epoch of radiation–matter equality (thus neutrinos are excluded, being non-baryonic but not cold)
* Dissipationless: Cannot cool by radiating photons
* Collisionless: Dark matter particles interact with each other and other particles only through gravity and possibly the [[weak force]]
 
Dark matter constitutes about 26.5%<ref name="PDG2019">{{cite journal |first1=M. |last1= Tanabashi |display-authors=etal |collaboration=[[Particle Data Group]] |url=http://pdg.lbl.gov/2019/reviews/rpp2019-rev-astrophysical-constants.pdf |title=Astrophysical Constants and Parameters |publisher=[[Particle Data Group]] |year=2019 |access-date=2020-03-08 |journal=Physical Review D |volume=98 |issue=3 |page=030001|doi= 10.1103/PhysRevD.98.030001|doi-access=free |bibcode= 2018PhRvD..98c0001T }}</ref> of the mass–energy density of the universe. The remaining 4.9%<ref name="PDG2019"/> comprises all ordinary matter observed as atoms, chemical elements, gas and [[Plasma (physics)|plasma]], the stuff of which visible planets, stars and galaxies are made. The great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10% of the ordinary matter contribution to the mass–energy density of the universe.<ref>
{{cite journal
| last1 = Persic
Line 61 ⟶ 63:
}}</ref>
 
The model includes a single originating event, the "[[Big Bang]]", which was not an explosion but the abrupt appearance of expanding [[spacetime]] containing radiation at temperatures of around 10<sup>15</sup>&nbsp;K. This was immediately (within 10<sup>−29</sup> seconds) followed by an exponential expansion of space by a scale multiplier of 10<sup>27</sup> or more, known as [[cosmic inflation]]. The early universe remained hot (above 10 ,000 K) for several hundred thousand years, a state that is detectable as a residual [[cosmic microwave background]], or CMB, a very low-energy radiation emanating from all parts of the sky. The "Big Bang" scenario, with cosmic inflation and standard particle physics, is the only cosmological model consistent with the observed continuing expansion of space, the observed distribution of [[Big Bang nucleosynthesis|lighter elements in the universe]] (hydrogen, helium, and lithium), and the spatial texture of minute irregularities ([[Anisotropy|anisotropies]]) in the CMB radiation. Cosmic inflation also addresses the "[[horizon problem]]" in the CMB; indeed, it seems likely that the universe is larger than the observable [[particle horizon]].<ref>{{citationCite journal |last1=Davis |first1=Tamara M. |last2=Lineweaver |first2=Charles H. needed|date=FebruaryJanuary 2004 |title=Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe |url=https://www.cambridge.org/core/journals/publications-of-the-astronomical-society-of-australia/article/expanding-confusion-common-misconceptions-of-cosmological-horizons-and-the-superluminal-expansion-of-the-universe/EFEEEFD8D71E59F86DDA82FDF576EFD3 |journal=Publications of the Astronomical Society of Australia |language=en |volume=21 |issue=1 |pages=97–109 |doi=10.1071/AS03040 |issn=1323-3580|arxiv=astro-ph/0310808 |bibcode=2004PASA...21...97D 2024}}</ref>
 
The model uses the [[Friedmann–Lemaître–Robertson–Walker metric]], the [[Friedmann equations]], and the [[Equation of state (cosmology)|cosmological equations of state]] to describe the observable universe from approximately 0.1&nbsp;s to the present.<ref name=DeruelleUzan/>{{rp|605}}
 
== Cosmic expansion history ==
The expansion of the universe is parameterized by a [[dimensionless]] [[scale factor (cosmology)|scale factor]] <math>a = a(t)</math> (with time <math>t</math> counted from the birth of the universe), defined relative to the present time, so <math>a_0 = a(t_0) = 1 </math>; the usual convention in cosmology is that subscript 0 denotes present-day values, so <math>t_0</math> denotes the age of the universe. The scale factor is related to the observed [[Redshift#Expansion of space|redshift]]<ref name="Dodelson"/> <math>z</math> of the light emitted at time <math>t_\mathrm{em}</math> by
 
: <math>a(t_\text{em}) = \frac{1}{1 + z}\,.</math>
<math display="block">a(t_\text{em}) = \frac{1}{1 + z}\,.</math>
 
The expansion rate is described by the time-dependent [[Hubble parameter]], <math>H(t)</math>, defined as
 
: <math>H(t) \equiv \frac{\dot a}{a},</math>
<math display="block">H(t) \equiv \frac{\dot a}{a},</math>
 
where <math>\dot a</math> is the time-derivative of the scale factor. The first [[Friedmann equations|Friedmann equation]] gives the expansion rate in terms of the matter+radiation density {{nowrap|<math>\rho</math>,}} the [[Curvature of the universe|curvature]] {{nowrap|<math>k</math>,}} and the [[cosmological constant]] {{nowrap|<math>\Lambda</math>,}}<ref name="Dodelson">{{cite book |last=Dodelson |first=Scott |title=Modern cosmology |date=2008 |publisher=[[Academic Press]] |___location=San Diego, CA |isbn=978-0-12-219141-1 |edition=4}}</ref>
 
: <math>H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3} \rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}, </math>
<math display="block">H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3} \rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}, </math>
where, as usual {{nowrap|<math>c</math>}} is the speed of light and {{nowrap|<math>G</math>}} is the [[gravitational constant]].
 
A critical density <math>\rho_\mathrm{crit}</math> is the present-day density, which gives zero curvature <math>k</math>, assuming the cosmological constant <math>\Lambda</math> is zero, regardless of its actual value. Substituting these conditions to the Friedmann equation gives
where, as usual <math>c</math> is the speed of light and <math>G</math> is the [[gravitational constant]].
: <math>\rho_\mathrm{crit} = \frac{3 H_0^2}{8 \pi G} = 1.878\;47(23) \times 10^{-26} \; h^2 \; \mathrm{kg{\cdot}m^{-3}},</math>{{refn|name=constants|{{cite web|url=http://pdg.lbl.gov/2015/reviews/rpp2014-rev-astrophysical-constants.pdf |title=The Review of Particle Physics. 2. Astrophysical constants and parameters |author=K.A. Olive |collaboration=Particle Data Group |website=Particle Data Group: Berkeley Lab |date=2015 |access-date=10 January 2016 |archive-url=https://web.archive.org/web/20151203100912/http://pdg.lbl.gov/2015/reviews/rpp2014-rev-astrophysical-constants.pdf |archive-date= 3 December 2015 }}}}
A critical density <math>\rho_\mathrm{crit}</math> is the present-day density, which gives zero curvature <math>k</math>, assuming the cosmological constant <math>\Lambda</math> is zero, regardless of its actual value. Substituting these conditions to the Friedmann equation gives{{refn|name=constants|{{cite web|url=http://pdg.lbl.gov/2015/reviews/rpp2014-rev-astrophysical-constants.pdf |title=The Review of Particle Physics. 2. Astrophysical constants and parameters |author=K.A. Olive |collaboration=Particle Data Group |website=Particle Data Group: Berkeley Lab |date=2015 |access-date=10 January 2016 |archive-url=https://web.archive.org/web/20151203100912/http://pdg.lbl.gov/2015/reviews/rpp2014-rev-astrophysical-constants.pdf |archive-date= 3 December 2015 }}}}
 
<math display="block">\rho_\mathrm{crit} = \frac{3 H_0^2}{8 \pi G} = 1.878\;47(23) \times 10^{-26} \; h^2 \; \mathrm{kg{\cdot}m^{-3}},</math>
 
where <math> h \equiv H_0 / (100 \; \mathrm{km{\cdot}s^{-1}{\cdot}Mpc^{-1}}) </math> is the reduced Hubble constant.
If the cosmological constant were actually zero, the critical density would also mark the dividing line between eventual recollapse of the universe to a [[Big Crunch]], or unlimited expansion. For the Lambda-CDM model with a positive cosmological constant (as observed), the universe is predicted to expand forever regardless of whether the total density is slightly above or below the critical density; though other outcomes are possible in extended models where the [[dark energy]] is not constant but actually time-dependent.{{citation needed|date=February 2024}}
 
The present-day '''density parameter''' <math>\Omega_x</math> for various species is defined as the dimensionless ratio<ref name=Peacock-1998/>{{rp|p=74}}
 
: <math>\Omega_x \equiv \frac{\rho_x(t=t_0)}{\rho_\mathrm{crit} } = \frac{8 \pi G\rho_x(t=t_0)}{3 H_0^2}</math>
<math display="block">\Omega_x \equiv \frac{\rho_x(t=t_0)}{\rho_\mathrm{crit} } = \frac{8 \pi G\rho_x(t=t_0)}{3 H_0^2}</math>
 
where the subscript <math>x</math> is one of <math>\mathrm b</math> for [[baryon]]s, <math>\mathrm c</math> for [[cold dark matter]], <math>\mathrm{rad}</math> for [[radiation]] ([[photon]]s plus relativistic [[neutrino]]s), and <math>\Lambda</math> for [[dark energy]].{{citation needed|date=February 2024}}
 
Since the densities of various species scale as different powers of <math>a</math>, e.g. <math>a^{-3}</math> for matter etc.,
the [[Friedmann equation]] can be conveniently rewritten in terms of the various density parameters as
 
: <math>H(a) \equiv \frac{\dot{a}}{a} = H_0 \sqrt{ (\Omega_{\rm c} + \Omega_{\rm b}) a^{-3} + \Omega_\mathrm{rad} a^{-4} + \Omega_k a^{-2} + \Omega_{\Lambda} a^{-3(1+w)} } ,</math>
<math display="block">H(a) \equiv \frac{\dot{a}}{a} = H_0 \sqrt{ (\Omega_{\rm c} + \Omega_{\rm b}) a^{-3} + \Omega_\mathrm{rad} a^{-4} + \Omega_k a^{-2} + \Omega_{\Lambda} a^{-3(1+w)} } ,</math>
 
where <math>w</math> is the [[Equation of state (cosmology)|equation of state]] parameter of dark energy, and assuming negligible neutrino mass (significant neutrino mass requires a more complex equation). The various <math> \Omega </math> parameters add up to <math>1</math> by construction. In the general case this is integrated by computer to give the expansion history <math>a(t)</math> and also observable distance–redshift relations for any chosen values of the cosmological parameters, which can then be compared with observations such as [[supernovae]] and [[baryon acoustic oscillations]].{{citation needed|date=February 2024}}
 
In the minimal 6-parameter Lambda-CDM model, it is assumed that curvature <math>\Omega_k</math> is zero and <math> w = -1 </math>, so this simplifies to
 
: <math> H(a) = H_0 \sqrt{ \Omega_{\rm m} a^{-3} + \Omega_\mathrm{rad} a^{-4} + \Omega_\Lambda } </math>
<math display="block"> H(a) = H_0 \sqrt{ \Omega_{\rm m} a^{-3} + \Omega_\mathrm{rad} a^{-4} + \Omega_\Lambda } </math>
 
Observations show that the radiation density is very small today, <math> \Omega_\text{rad} \sim 10^{-4} </math>; if this term is neglected
the above has an analytic solution<ref>{{cite journal|last1=Frieman|first1=Joshua A.|last2=Turner|first2=Michael S.|last3=Huterer|first3=Dragan|title=Dark Energy and the Accelerating Universe|journal=Annual Review of Astronomy and Astrophysics|year=2008|volume=46|issue=1|pages=385–432|arxiv=0803.0982|doi=10.1146/annurev.astro.46.060407.145243|bibcode=2008ARA&A..46..385F|s2cid=15117520}}</ref>
 
: <math> a(t) = (\Omega_{\rm m} / \Omega_\Lambda)^{1/3} \, \sinh^{2/3} ( t / t_\Lambda) </math>
<math display="block"> a(t) = (\Omega_{\rm m} / \Omega_\Lambda)^{1/3} \, \sinh^{2/3} ( t / t_\Lambda) </math>
 
where <math> t_\Lambda \equiv 2 / (3 H_0 \sqrt{\Omega_\Lambda} ) \ ; </math>
 
this is fairly accurate for <math>a > 0.01</math> or <math>t > 10</math> million years.
Solving for <math> a(t) = 1 </math> gives the present age of the universe <math> t_0 </math> in terms of the other parameters.{{citation needed|date=February 2024}}
 
It follows that the transition from decelerating to accelerating expansion (the second derivative <math> \ddot{a} </math> crossing zero) occurred when
 
: <math> a = ( \Omega_{\rm m} / 2 \Omega_\Lambda )^{1/3} ,</math>
<math display="block"> a = ( \Omega_{\rm m} / 2 \Omega_\Lambda )^{1/3} ,</math>
 
which evaluates to <math>a \sim 0.6</math> or <math>z \sim 0.66</math> for the best-fit parameters estimated from the [[Planck (spacecraft)|''Planck'' spacecraft]].{{citation needed|date=February 2024}}
 
Line 106 ⟶ 124:
|+ Planck Collaboration Cosmological parameters
! &emsp;&emsp;
! Description<ref name="Planck-2013">The parameters used in the Planck series of papers are described in Table 1 of {{Cite journal |lastlast1=Ade |firstfirst1=P. a. R. |last2=Aghanim |first2=N. |last3=Armitage-Caplan |first3=C. |last4=Arnaud |first4=M. |last5=Ashdown |first5=M. |last6=Atrio-Barandela |first6=F. |last7=Aumont |first7=J. |last8=Baccigalupi |first8=C. |last9=Banday |first9=A. J. |last10=Barreiro |first10=R. B. |last11=Bartlett |first11=J. G. |last12=Battaner |first12=E. |last13=Benabed |first13=K. |last14=Benoît |first14=A. |last15=Benoit-Lévy |first15=A. |date=2014-11-01 |title=Planck 2013 results. XVI. Cosmological parameters |url=https://www.aanda.org/articles/aa/full_html/2014/11/aa21591-13/aa21591-13.html |journal=Astronomy & Astrophysics |language=en |volume=571 |pages=A16 |doi=10.1051/0004-6361/201321591 |issn=0004-6361|arxiv=1303.5076 |bibcode=2014A&A...571A..16P }}</ref>
! Symbol
! Value-2018<ref name="Planck 2018">
Line 225 ⟶ 243:
* Prediction of the observed [[Polarization (cosmology)|B-mode polarization]] of the CMB light due to primordial gravitational waves.<ref name="Ade-BModes-2021">{{Cite journal |last1=Ade |first1=P. A. R. |last2=Ahmed |first2=Z. |last3=Amiri |first3=M. |last4=Barkats |first4=D. |last5=Thakur |first5=R. Basu |last6=Bischoff |first6=C. A. |last7=Beck |first7=D. |last8=Bock |first8=J. J. |last9=Boenish |first9=H. |last10=Bullock |first10=E. |last11=Buza |first11=V. |last12=Cheshire |first12=J. R. |last13=Connors |first13=J. |last14=Cornelison |first14=J. |last15=Crumrine |first15=M. |date=2021-10-04 |title=Improved Constraints on Primordial Gravitational Waves using Planck , WMAP, and BICEP/ Keck Observations through the 2018 Observing Season |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.151301 |journal=Physical Review Letters |language=en |volume=127 |issue=15 |page=151301 |doi=10.1103/PhysRevLett.127.151301 |pmid=34678017 |arxiv=2110.00483 |bibcode=2021PhRvL.127o1301A |issn=0031-9007}}</ref><ref name="Snowmass21"/>
* Observations of H<sub>2</sub>O emission spectra from a galaxy 12.8 billion light years away consistent with molecules excited by cosmic background radiation much more energetic – 16-20K – than the CMB we observe now, 3K.<ref name="Riechers-2022">{{Cite journal |last1=Riechers |first1=Dominik A. |last2=Weiss |first2=Axel |last3=Walter |first3=Fabian |last4=Carilli |first4=Christopher L. |last5=Cox |first5=Pierre |last6=Decarli |first6=Roberto |last7=Neri |first7=Roberto |date=February 2022 |title=Microwave background temperature at a redshift of 6.34 from H2O absorption |journal=Nature |language=en |volume=602 |issue=7895 |pages=58–62 |doi=10.1038/s41586-021-04294-5 |issn=1476-4687 |pmc=8810383 |pmid=35110755}}</ref><ref name="Snowmass21"/>
* Predictions of the primordial abundance of [[deuterium]] as a result of [[Big bangBang nucleosynthesis]].<ref name="Cooke-2014">{{Cite journal |lastlast1=Cooke |firstfirst1=Ryan J. |last2=Pettini |first2=Max |last3=Jorgenson |first3=Regina A. |last4=Murphy |first4=Michael T. |last5=Steidel |first5=Charles C. |date=2014-01-03 |title=PRECISIONPrecision MEASURESMeasures OFof THEthe PRIMORDIALPrimordial ABUNDANCEAbundance OFof DEUTERIUMDeuterium |journal=The Astrophysical Journal |volume=781 |issue=1 |pages=31 |doi=10.1088/0004-637x/781/1/31 |issn=0004-637X|arxiv=1308.3240 |bibcode=2014ApJ...781...31C }}</ref> The observed abundance matches the one derived from the nucleosynthesis model with the value for baryon density derived from CMB measurements.<ref name="Turner"/>{{rp|4.1.2}}
In addition to explaining many pre-2000 observations, the model has made a number of successful predictions: notably the existence of the [[baryon acoustic oscillation]] feature, discovered in 2005 in the predicted ___location; and the statistics of weak [[gravitational lensing]], first observed in 2000 by several teams. The [[Cosmic microwave background#Polarization|polarization]] of the CMB, discovered in 2002 by DASI,<ref>{{cite journal |last1=Kovac|first1=J. M.|last2=Leitch|first2=E. M.|last3=Pryke|first3=C.|author3-link=Clement Pryke|last4=Carlstrom|first4=J. E.|last5=Halverson|first5=N. W. |last6=Holzapfel |first6=W. L.|title=Detection of polarization in the cosmic microwave background using DASI |journal=Nature |year=2002|volume=420|issue=6917 |pages=772–787 |doi=10.1038/nature01269 |pmid=12490941 |arxiv=astro-ph/0209478|bibcode=2002Natur.420..772K|s2cid=4359884|url=https://cds.cern.ch/record/582473}}</ref> has been successfully predicted by the model: in the 2015 ''Planck'' data release,<ref>{{cite journal |title=Planck 2015 Results. XIII. Cosmological Parameters |arxiv=1502.01589 |author1=Planck Collaboration |year=2016 |doi=10.1051/0004-6361/201525830 |volume=594 |issue=13 |journal=Astronomy & Astrophysics |page=A13 |bibcode=2016A&A...594A..13P|s2cid=119262962 }}</ref> there are seven observed peaks in the temperature (TT) power spectrum, six peaks in the temperature–polarization (TE) cross spectrum, and five peaks in the polarization (EE) spectrum. The six free parameters can be well constrained by the TT spectrum alone, and then the TE and EE spectra can be predicted theoretically to few-percent precision with no further adjustments allowed.{{citation needed|date=February 2024}}
 
Line 236 ⟶ 254:
=== Violations of the cosmological principle ===
{{main|Cosmological principle|Friedmann–Lemaître–Robertson–Walker metric}}
The ΛCDM model, like all models built on the Friedmann–Lemaître–Robertson–Walker metric, assume that the universe looks the same in all directions ([[isotropy]]) and from every ___location ([[homogeneity (physics)|homogeneity]]) if you look aton a large enough scale: "the universe looks the same whoever and wherever you are."<ref>Andrew Liddle. ''An Introduction to Modern Cosmology (2nd ed.).'' London: Wiley, 2003.</ref> This [[cosmological principle]] allows a metric, [[Friedmann–Lemaître–Robertson–Walker metric]], to be derived and developed into a theory to compare to experiments. Without the principle, a metric would need to be extracted from astronomical data, which may not be possible.<ref>{{cite book|title=Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity|author=[[Steven Weinberg]]|isbn=978-0-471-92567-5|year=1972|publisher=John Wiley & Sons, Inc.}}</ref>{{rp|408}} The assumptions were carried over into the ΛCDM model.<ref name="Colin et al">{{cite journal|title=Evidence for anisotropy of cosmic acceleration|author1=Jacques Colin|author2=Roya Mohayaee|author3=Mohamed Rameez|author4=Subir Sarkar|journal=Astronomy and Astrophysics|volume=631|doi=10.1051/0004-6361/201936373|arxiv=1808.04597|date=20 November 2019|pages=L13|bibcode=2019A&A...631L..13C|s2cid=208175643|access-date=25 March 2022|url=https://www.aanda.org/articles/aa/full_html/2019/11/aa36373-19/aa36373-19.html}}</ref> However, some findings suggested violations of the cosmological principle.<ref name="Snowmass21"/><ref name="FLRW breakdown"/>
 
==== Violations of isotropy ====
Line 247 ⟶ 265:
The CMB dipole is hinted at through a number of other observations. First, even within the cosmic microwave background, there are curious directional alignments<ref>{{cite journal |last1=de Oliveira-Costa |first1=Angelica |last2=Tegmark |first2=Max |last3=Zaldarriaga |first3=Matias |last4=Hamilton |first4=Andrew |title=The significance of the largest scale CMB fluctuations in WMAP |journal=Physical Review D |date=25 March 2004 |volume=69 |issue=6 |page=063516 |doi=10.1103/PhysRevD.69.063516 |arxiv=astro-ph/0307282 |bibcode=2004PhRvD..69f3516D |s2cid=119463060 |issn=1550-7998}}</ref> and an anomalous parity asymmetry<ref>{{cite journal |last1=Land |first1=Kate |last2=Magueijo |first2=Joao |title=Is the Universe odd? |journal=Physical Review D |date=28 November 2005 |volume=72 |issue=10 |page=101302 |doi=10.1103/PhysRevD.72.101302 |arxiv=astro-ph/0507289 |bibcode=2005PhRvD..72j1302L |s2cid=119333704 |issn=1550-7998}}</ref> that may have an origin in the CMB dipole.<ref>{{cite journal |last1=Kim |first1=Jaiseung |last2=Naselsky |first2=Pavel |title=Anomalous parity asymmetry of the Wilkinson Microwave Anisotropy Probe power spectrum data at low multipoles |journal=The Astrophysical Journal |date=10 May 2010 |volume=714 |issue=2 |pages=L265–L267 |doi=10.1088/2041-8205/714/2/L265 |arxiv=1001.4613 |bibcode=2010ApJ...714L.265K |s2cid=24389919 |issn=2041-8205}}</ref> Separately, the CMB dipole direction has emerged as a preferred direction in studies of alignments in quasar polarizations,<ref>{{cite journal |last1=Hutsemekers |first1=D. |last2=Cabanac |first2=R. |last3=Lamy |first3=H. |last4=Sluse |first4=D. |title=Mapping extreme-scale alignments of quasar polarization vectors |journal=Astronomy & Astrophysics |date=October 2005 |volume=441 |issue=3 |pages=915–930 |doi=10.1051/0004-6361:20053337 |arxiv=astro-ph/0507274 |bibcode=2005A&A...441..915H |s2cid=14626666 |issn=0004-6361}}</ref> scaling relations in galaxy clusters,<ref>{{cite journal |last1=Migkas |first1=K. |last2=Schellenberger |first2=G. |last3=Reiprich |first3=T. H. |last4=Pacaud |first4=F. |last5=Ramos-Ceja |first5=M. E. |last6=Lovisari |first6=L. |title=Probing cosmic isotropy with a new X-ray galaxy cluster sample through the <math>L_{\text{X}}-T</math> scaling relation |journal=Astronomy & Astrophysics |date=April 2020 |volume=636 |pages=A15 |doi=10.1051/0004-6361/201936602 |arxiv=2004.03305 |bibcode=2020A&A...636A..15M |s2cid=215238834 |issn=0004-6361}}</ref><ref>{{cite journal |last1=Migkas |first1=K. |last2=Pacaud |first2=F. |last3=Schellenberger |first3=G. |last4=Erler |first4=J. |last5=Nguyen-Dang |first5=N. T. |last6=Reiprich |first6=T. H. |last7=Ramos-Ceja |first7=M. E. |last8=Lovisari |first8=L. |title=Cosmological implications of the anisotropy of ten galaxy cluster scaling relations |journal=Astronomy & Astrophysics |date=May 2021 |volume=649 |pages=A151 |doi=10.1051/0004-6361/202140296 |arxiv=2103.13904 |bibcode=2021A&A...649A.151M |s2cid=232352604 |issn=0004-6361}}</ref> [[strong lensing]] time delay,<ref name="FLRW breakdown">{{cite journal |last1=Krishnan |first1=Chethan |last2=Mohayaee |first2=Roya |last3=Colgáin |first3=Eoin Ó |last4=Sheikh-Jabbari |first4=M. M. |last5=Yin |first5=Lu |title=Does Hubble Tension Signal a Breakdown in FLRW Cosmology? |journal=Classical and Quantum Gravity |date=16 September 2021 |volume=38 |issue=18 |page=184001 |doi=10.1088/1361-6382/ac1a81 |arxiv=2105.09790 |bibcode=2021CQGra..38r4001K |s2cid=234790314 |issn=0264-9381}}</ref> Type Ia supernovae,<ref>{{cite journal |last1=Krishnan |first1=Chethan |last2=Mohayaee |first2=Roya |last3=Colgáin |first3=Eoin Ó |last4=Sheikh-Jabbari |first4=M. M. |last5=Yin |first5=Lu |title=Hints of FLRW breakdown from supernovae |journal=Physical Review D |year=2022 |volume=105 |issue=6 |page=063514 |doi=10.1103/PhysRevD.105.063514 |arxiv=2106.02532|bibcode=2022PhRvD.105f3514K |s2cid=235352881 }}</ref> and quasars and [[gamma-ray bursts]] as [[standard candles]].<ref>{{cite journal |last1=Luongo |first1=Orlando |last2=Muccino |first2=Marco |last3=Colgáin |first3=Eoin Ó |last4=Sheikh-Jabbari |first4=M. M. |last5=Yin |first5=Lu |title=Larger H0 values in the CMB dipole direction |journal=Physical Review D |year=2022 |volume=105 |issue=10 |page=103510 |doi=10.1103/PhysRevD.105.103510 |arxiv=2108.13228|bibcode=2022PhRvD.105j3510L |s2cid=248713777 }}</ref> The fact that all these independent observables, based on different physics, are tracking the CMB dipole direction suggests that the Universe is anisotropic in the direction of the CMB dipole.{{citation needed|date=February 2024}}
 
Nevertheless, some authors have stated that the universe around Earth is isotropic at high significance by studies of the combined cosmic microwave background temperature and polarization maps.<ref name=Saadeh>{{cite journal| vauthors = Saadeh D, Feeney SM, Pontzen A, Peiris HV, McEwen, JD|title=How Isotropic is the Universe?|journal=Physical Review Letters|date=2016|volume=117|number=13|pagearticle-number= 131302 |doi=10.1103/PhysRevLett.117.131302|pmid=27715088|arxiv=1605.07178|bibcode = 2016PhRvL.117m1302S |s2cid=453412}}</ref>
 
==== Violations of homogeneity ====
The homogeneity of the universe needed for the ΛCDM applies to very large volumes of space.
Based on [[N-body simulation]]s in ΛCDM, Yadav and his colleagues showed that the spatial distribution of galaxies is statistically homogeneous if averaged over scales 260[[Parsec#Megaparsecs and gigaparsecs|/h Mpc]] or more.<ref name=Yadav>{{cite journal|last=Yadav|first=Jaswant |author2=J. S. Bagla |author3=Nishikanta Khandai|title=Fractal dimension as a measure of the scale of homogeneity|journal=Monthly Notices of the Royal Astronomical Society|date=25 February 2010|volume=405|issue=3|pages=2009–2015|doi=10.1111/j.1365-2966.2010.16612.x |doi-access=free |arxiv = 1001.0617 |bibcode = 2010MNRAS.405.2009Y |s2cid=118603499 }}</ref> However, many large-scale structures have been discovered, and some authors have reported some of the structures to be in conflict with the predicted scale of homogeneity for ΛCDM, including
[[N-body simulation]]s in ΛCDM show that the spatial distribution of galaxies is statistically homogeneous if averaged over scales 260[[Parsec#Megaparsecs and gigaparsecs|/h Mpc]] or more.<ref name=Yadav>{{cite journal|last=Yadav|first=Jaswant |author2=J. S. Bagla |author3=Nishikanta Khandai|title=Fractal dimension as a measure of the scale of homogeneity|journal=Monthly Notices of the Royal Astronomical Society|date=25 February 2010|volume=405|issue=3|pages=2009–2015|doi=10.1111/j.1365-2966.2010.16612.x |doi-access=free |arxiv = 1001.0617 |bibcode = 2010MNRAS.405.2009Y |s2cid=118603499 }}</ref>
* The [[Clowes–Campusano LQG]], discovered in 1991, which has a length of 580 Mpc
Numerous claims of large-scale structures reported to be in conflict with the predicted scale of homogeneity for ΛCDM do not withstand statistical analysis.<ref name=Nadathur>{{cite journal|last=Nadathur|first=Seshadri|title=Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity|journal=Monthly Notices of the Royal Astronomical Society|date=2013|volume=434|issue=1|pages=398–406|doi=10.1093/mnras/stt1028|doi-access=free |arxiv=1306.1700|bibcode =2013MNRAS.434..398N|s2cid=119220579}}</ref><ref name="Snowmass21"/>{{rp|7.8}}
* The [[Sloan Great Wall]], discovered in 2003, which has a length of 423 Mpc<ref name=apj624_2_463>{{Cite journal | display-authors=1 | last1=Gott | first1=J. Richard III | last2=Jurić | first2=Mario | last3=Schlegel| first3=David | last4=Hoyle | first4=Fiona | last5=Vogeley | first5=Michael | last6=Tegmark | first6=Max | last7=Bahcall | first7=Neta |last8=Brinkmann | first8=Jon | title=A Map of the Universe | journal=The Astrophysical Journal | volume=624 | issue=2 | pages=463–484 |date=May 2005 | doi=10.1086/428890 | bibcode=2005ApJ...624..463G |arxiv = astro-ph/0310571| s2cid=9654355 }}</ref>
* [[U1.11]], a [[large quasar group]] discovered in 2011, which has a length of 780 Mpc
* The [[Huge-LQG]], discovered in 2012, which is three times longer than and twice as wide as is predicted possible according to ΛCDM
* The [[Hercules–Corona Borealis Great Wall]], discovered in November 2013, which has a length of 2000–3000 Mpc (more than seven times that of the [[Sloan Great Wall|SGW]])<ref>{{cite arXiv |eprint=1311.1104|last1= Horvath|first1= I.|title= The largest structure of the Universe, defined by Gamma-Ray Bursts|last2= Hakkila|first2= J.|last3= Bagoly|first3= Z.|class= astro-ph.CO|year= 2013}}</ref>
* The [[The Giant Arc|Giant Arc]], discovered in June 2021, which has a length of 1000 Mpc<ref>{{Cite web|url=https://www.newscientist.com/article/2280076-line-of-galaxies-is-so-big-it-breaks-our-understanding-of-the-universe/|title = Line of galaxies is so big it breaks our understanding of the universe}}</ref>
* The [[Big Ring]], reported in 2024, which has a diameter of 399 Mpc and is shaped like a ring<ref>{{cite news |last1=Cooper |first1=Keith |date=22 January 2024 |title=An impossibly huge ring of galaxies might lead us to new physics. Here's how |url=https://www.space.com/big-ring-galactic-superstructure-celestial-anomaly |access-date=31 January 2024 |work=Space.com |language=en}}</ref>
 
Other authors claim that the existence of structures larger than the scale of homogeneity in the ΛCDM model does not necessarily violate the cosmological principle in the ΛCDM model.<ref name=Nadathur>{{cite journal|last=Nadathur|first=Seshadri|title=Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity|journal=Monthly Notices of the Royal Astronomical Society|date=2013|volume=434|issue=1|pages=398–406|doi=10.1093/mnras/stt1028|doi-access=free |arxiv=1306.1700|bibcode =2013MNRAS.434..398N|s2cid=119220579}}</ref><ref name="Snowmass21"/>
 
=== El Gordo galaxy cluster collision ===
{{main|El Gordo (galaxy cluster)}}
 
[[El Gordo (galaxy cluster)|El Gordo]] is a massive interacting galaxy cluster in the early Universe (<math>z = 0.87</math>). The extreme properties of [[El Gordo (galaxy cluster)|El Gordo]] in terms of its redshift, mass, and the collision velocity leads to strong (<math>6.16\sigma</math>) tension with the ΛCDM model.<ref name="Asencio">{{Cite journal|last1=Asencio|first1=E|last2=Banik|first2=I|last3=Kroupa|first3=P|date=2021-02-21|title=A massive blow for ΛCDM – the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology|journal=Monthly Notices of the Royal Astronomical Society|volume=500|issue=2|pages=5249–5267|doi=10.1093/mnras/staa3441|arxiv=2012.03950|bibcode=2021MNRAS.500.5249A|issn=0035-8711|doi-access=free}}</ref><ref name="Asencio_2023">{{Cite journal|last1=Asencio|first1=E|last2=Banik|first2=I|last3=Kroupa|first3=P|date=2023-09-10|title=A massive blow for ΛCDM – the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology|journal=The Astrophysical Journal|volume=954|issue=2|pages=162|doi=10.3847/1538-4357/ace62a|doi-access=free|arxiv=2308.00744|bibcode=2023ApJ...954..162A|issn=1538-4357}}</ref> The properties of [[El Gordo (galaxy cluster)|El Gordo]] are however consistent with cosmological simulations in the framework of [[MOND]] due to more rapid structure formation.<ref name="Katz">{{Cite journal|last1=Katz|first1=H|last2=McGaugh|first2=S|last3=Teuben|first3=P|last4=Angus|first4=G. W.|date=2013-07-20|title=Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND|journal = The Astrophysical Journal|volume=772|issue=1|page=10|doi=10.1088/0004-637X/772/1/10|arxiv=1305.3651|bibcode=2013ApJ...772...10K|issn=1538-4357|doi-access=free}}</ref>
 
=== KBC void ===
{{main|KBC void}}
 
The [[KBC void]] is an immense, comparatively empty region of space containing the [[Milky Way]] approximately 2 billion light-years (600 megaparsecs, Mpc) in diameter.<ref name="kbc">{{Cite journal | last1 = Keenan | first1 = Ryan C. | last2 = Barger | first2 = Amy J. | last3 = Cowie | first3 = Lennox L. | title = Evidence for a ~300&nbsp;Mpc Scale Under-density in the Local Galaxy Distribution | journal = The Astrophysical Journal | volume = 775 | year = 2013 | issue = 1 | page = 62 | doi = 10.1088/0004-637X/775/1/62 |arxiv = 1304.2884 |bibcode = 2013ApJ...775...62K | s2cid = 118433293 }}</ref><ref name="siegel">{{cite web|url=https://www.forbes.com/sites/startswithabang/2017/06/07/were-way-below-average-astronomers-say-milky-way-resides-in-a-great-cosmic-void/#4d53c7cd6d05|title=We're Way Below Average! Astronomers Say Milky Way Resides In A Great Cosmic Void|last=Siegel|first=Ethan|work=[[Forbes]]|access-date=2017-06-09}}</ref><ref name="Snowmass21"/> Some authors have said the existence of the KBC void violates the assumption that the CMB reflects baryonic density fluctuations at <math>z = 1100</math> or Einstein's theory of [[general relativity]], either of which would violate the ΛCDM model,<ref name="Haslbauer">{{Cite journal|last1=Haslbauer|first1=M|last2=Banik|first2=I|last3=Kroupa|first3=P|date=2020-12-21|title=The KBC void and Hubble tension contradict LCDM on a Gpc scale – Milgromian dynamics as a possible solution|journal=Monthly Notices of the Royal Astronomical Society|volume=499|issue=2|pages=2845–2883|doi=10.1093/mnras/staa2348|arxiv=2009.11292|bibcode=2020MNRAS.499.2845H|issn=0035-8711|doi-access=free}}</ref> while other authors have claimed that supervoids as large as the KBC void are consistent with the ΛCDM model.<ref>{{Cite journal|last1=Sahlén|first1=Martin|last2=Zubeldía|first2=Íñigo|last3=Silk|first3=Joseph|date=2016|title=Cluster–Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void|journal=The Astrophysical Journal Letters|volume=820|issue=1|pages=L7|doi=10.3847/2041-8205/820/1/L7|issn=2041-8205|arxiv=1511.04075|bibcode=2016ApJ...820L...7S|s2cid=119286482 |doi-access=free }}</ref>
 
=== Hubble tension ===
{{main|Hubble tension}}
Statistically significant differences remain in values of the Hubble constant derived by matching the ΛCDM model to data from the "early universe", like the cosmic background radiation, compared to values derived from stellar distance measurements, called the "late universe". While systematic error in the measurements remains a possibility, many different kinds of observations agree with one of these two values of the constant. This difference, called the [[Hubble tension]],<ref name="di Valentino 2021 153001">{{cite journal |last1=di Valentino |first1=Eleonora |last2=Mena |first2=Olga |last3=Pan |first3=Supriya |last4=Visnelli |first4=Luca |last5=Yang |first5=Weiqiang |last6=Melchiorri |first6=Alessandro|last7=Mota|first7=David F.|last8=Reiss|first8=Adam G. |last9=Silk|first9=Joseph|author-link9=Joseph Silk|display-authors=3 |date=2021 |title=In the realm of the Hubble tension—a review of solutions |journal=Classical and Quantum Gravity |volume=38 |issue=15 |page=153001 |doi=10.1088/1361-6382/ac086d |arxiv=2103.01183|bibcode=2021CQGra..38o3001D |s2cid=232092525 }}</ref> widely acknowledged to be a major problem for the ΛCDM model.<ref name="cern-courier"/><ref name="LS-20190826">
{{cite news
|last=Mann |first=Adam
Line 279 ⟶ 280:
|url=https://www.livescience.com/hubble-constant-discrepancy-explained.html
|date=26 August 2019 |work=[[Live Science]] |access-date=26 August 2019
}}</ref><ref name="Snowmass21"/><ref name="Turner"/>
 
Dozens of proposals for modifications of ΛCDM or completely new models have been published to explain the Hubble tension. Among these models are many that modify the properties of [[dark energy]] or of [[dark matter]] over time, interactions between dark energy and dark matter, unified dark energy and matter, other forms of dark radiation like [[sterile neutrinos]], modifications to the properties of gravity, or the modification of the effects of [[inflation (cosmology)|inflation]], changes to the properties of elementary particles in the early universe, among others. None of these models can simultaneously explain the breadth of other cosmological data as well as ΛCDM.<ref name="di Valentino 2021 153001"/>
 
=== ''S''<sub>8</sub> tension ===
The "<math>S_8</math> tension" inis cosmologya isname for another majorquestion problemmark for the ΛCDM model.<ref name="Snowmass21"/> The <math>S_8</math> parameter in the ΛCDM model quantifies the amplitude of matter fluctuations in the late universe and is defined as
<math display="block">S_8 \equiv \sigma_8\sqrt{\Omega_{\rm m}/0.3}</math>Early- (e.g. from [[Cosmic microwave background|CMB]] data) and late-time (e.g. measuring [[weak gravitational lensing]]) measurements facilitate increasingly precise values of <math>S_8</math>. Results from initial weak lensing measurements found a lower value of <math>S_8</math>, compared to the value estimated from Planck<ref>{{Cite journal |last1=Fu |first1=L. |last2=Kilbinger |first2=M. |last3=Erben |first3=T. |last4=Heymans |first4=C. |last5=Hildebrandt |first5=H. |last6=Hoekstra |first6=H. |last7=Kitching |first7=T. D. |last8=Mellier |first8=Y. |last9=Miller |first9=L. |last10=Semboloni |first10=E. |last11=Simon |first11=P. |last12=Van Waerbeke |first12=L. |last13=Coupon |first13=J. |last14=Harnois-Deraps |first14=J. |last15=Hudson |first15=M. J. |date=2014-05-26 |title=CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=441 |issue=3 |pages=2725–2743 |doi=10.1093/mnras/stu754 |doi-access=free |issn=0035-8711}}</ref><ref>{{Cite journal |last1=Abdalla |first1=Elcio |last2=Abellán |first2=Guillermo Franco |last3=Aboubrahim |first3=Amin |last4=Agnello |first4=Adriano |last5=Akarsu |first5=Özgür |last6=Akrami |first6=Yashar |last7=Alestas |first7=George |last8=Aloni |first8=Daniel |last9=Amendola |first9=Luca |last10=Anchordoqui |first10=Luis A. |last11=Anderson |first11=Richard I. |last12=Arendse |first12=Nikki |last13=Asgari |first13=Marika |last14=Ballardini |first14=Mario |last15=Barger |first15=Vernon |date=June 2022 |title=Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies |url=https://linkinghub.elsevier.com/retrieve/pii/S2214404822000179 |journal=Journal of High Energy Astrophysics |language=en |volume=34 |pages=49–211 |doi=10.1016/j.jheap.2022.04.002 |arxiv=2203.06142 |bibcode=2022JHEAp..34...49A }}</ref>. In recent years much larger surveys have been carried out, some of the preliminarily results also showed evidence of the same tension<ref>{{Cite journal |last1=Heymans |first1=Catherine |last2=Tröster |first2=Tilman |last3=Asgari |first3=Marika |last4=Blake |first4=Chris |last5=Hildebrandt |first5=Hendrik |last6=Joachimi |first6=Benjamin |last7=Kuijken |first7=Konrad |last8=Lin |first8=Chieh-An |last9=Sánchez |first9=Ariel G. |last10=van den Busch |first10=Jan Luca |last11=Wright |first11=Angus H. |last12=Amon |first12=Alexandra |last13=Bilicki |first13=Maciej |last14=de Jong |first14=Jelte |last15=Crocce |first15=Martin |date=February 2021 |title=KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints |url=https://www.aanda.org/10.1051/0004-6361/202039063 |journal=Astronomy & Astrophysics |volume=646 |pages=A140 |doi=10.1051/0004-6361/202039063 |issn=0004-6361|arxiv=2007.15632 |bibcode=2021A&A...646A.140H }}</ref><ref>{{Cite journal |last1=Abbott |first1=T. M. C. |last2=Aguena |first2=M. |last3=Alarcon |first3=A. |last4=Allam |first4=S. |last5=Alves |first5=O. |last6=Amon |first6=A. |last7=Andrade-Oliveira |first7=F. |last8=Annis |first8=J. |last9=Avila |first9=S. |last10=Bacon |first10=D. |last11=Baxter |first11=E. |last12=Bechtol |first12=K. |last13=Becker |first13=M. R. |last14=Bernstein |first14=G. M. |last15=Bhargava |first15=S. |date=2022-01-13 |title=Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing |url=https://link.aps.org/doi/10.1103/PhysRevD.105.023520 |journal=Physical Review D |language=en |volume=105 |issue=2 |page=023520 |doi=10.1103/PhysRevD.105.023520 |issn=2470-0010|arxiv=2105.13549 |bibcode=2022PhRvD.105b3520A |hdl=11368/3013060 }}</ref><ref>{{Cite journal |last1=Li |first1=Xiangchong |last2=Zhang |first2=Tianqing |last3=Sugiyama |first3=Sunao |last4=Dalal |first4=Roohi |last5=Terasawa |first5=Ryo |last6=Rau |first6=Markus M. |last7=Mandelbaum |first7=Rachel |last8=Takada |first8=Masahiro |last9=More |first9=Surhud |last10=Strauss |first10=Michael A. |last11=Miyatake |first11=Hironao |last12=Shirasaki |first12=Masato |last13=Hamana |first13=Takashi |last14=Oguri |first14=Masamune |last15=Luo |first15=Wentao |date=2023-12-11 |title=Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions |url=https://link.aps.org/doi/10.1103/PhysRevD.108.123518 |journal=Physical Review D |language=en |volume=108 |issue=12 |page=123518 |doi=10.1103/PhysRevD.108.123518 |issn=2470-0010|arxiv=2304.00702 |bibcode=2023PhRvD.108l3518L }}</ref>. However, other projects found that with increasing precision there was no significant tension, finding consistency with the Planck results<ref>{{Citation |last1=Wright |first1=Angus H. |title=KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey |date=2025 |arxiv=2503.19441 |last2=Stölzner |first2=Benjamin |last3=Asgari |first3=Marika |last4=Bilicki |first4=Maciej |last5=Giblin |first5=Benjamin |last6=Heymans |first6=Catherine |last7=Hildebrandt |first7=Hendrik |last8=Hoekstra |first8=Henk |last9=Joachimi |first9=Benjamin}}</ref><ref>{{Cite web |last=Kruesi |first=Liz |date=4 March 2024 |title=Fresh X-Rays Reveal a Universe as Clumpy as Cosmology Predicts |url=https://www.quantamagazine.org/fresh-x-rays-reveal-a-universe-as-clumpy-as-cosmology-predicts-20240304/ |website=[[Quanta Magazine]]}}</ref><ref>{{Cite web |title=eROSITA relaxes cosmological tension |url=https://www.mpg.de/21542664/erosita-confirms-standard-model-of-cosmology |access-date=2025-07-24 |website=www.mpg.de |language=en}}</ref>.
: <math>S_8 \equiv \sigma_8\sqrt{\Omega_{\rm m}/0.3}</math>
 
Early- (e.g. from [[Cosmic microwave background|CMB]] data collected using the Planck observatory) and late-time (e.g. measuring [[weak gravitational lensing]] events) facilitate increasingly precise values of <math>S_8</math>. However, these two categories of measurement differ by more standard deviations than their uncertainties. This discrepancy is called the <math>S_8</math> tension. The name "tension" reflects that the disagreement is not merely between two data sets: the many sets of early- and late-time measurements agree well within their own categories, but there is an unexplained difference between values obtained from different points in the evolution of the universe. Such a tension indicates that the ΛCDM model may be incomplete or in need of correction.<ref name="Snowmass21"/>
 
Some values for <math>S_8</math> are {{val|0.832|0.013}} (2020 [[Planck (spacecraft)|Planck]]),<ref>{{cite journal |last1=Planck Collaboration |last2=Aghanim |first2=N. |last3=Akrami |first3=Y. |last4=Ashdown |first4=M. |last5=Aumont |first5=J. |last6=Baccigalupi |first6=C. |last7=Ballardini |first7=M. |last8=Banday |first8=A. J. |last9=Barreiro |first9=R. B. |last10=Bartolo |first10=N. |last11=Basak |first11=S. |last12=Battye |first12=R. |last13=Benabed |first13=K. |last14=Bernard |first14=J.-P. |last15=Bersanelli |first15=M. |date=September 2020 |title=Planck 2018 results: VI. Cosmological parameters (Corrigendum) |url=https://www.aanda.org/10.1051/0004-6361/201833910e |journal=Astronomy & Astrophysics |volume=652 |pages=C4 |doi=10.1051/0004-6361/201833910e |issn=0004-6361|hdl=10902/24951 |hdl-access=free }}</ref> {{val|0.766|0.020|0.014}} (2021 [https://kids.strw.leidenuniv.nl/ KIDS]),<ref>{{Cite journal |last1=Heymans |first1=Catherine |last2=Tröster |first2=Tilman |last3=Asgari |first3=Marika |last4=Blake |first4=Chris |last5=Hildebrandt |first5=Hendrik |last6=Joachimi |first6=Benjamin |last7=Kuijken |first7=Konrad |last8=Lin |first8=Chieh-An |last9=Sánchez |first9=Ariel G. |last10=van den Busch |first10=Jan Luca |last11=Wright |first11=Angus H. |last12=Amon |first12=Alexandra |last13=Bilicki |first13=Maciej |last14=de Jong |first14=Jelte |last15=Crocce |first15=Martin |date=February 2021 |title=KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints |url=https://www.aanda.org/10.1051/0004-6361/202039063 |journal=Astronomy & Astrophysics |volume=646 |pages=A140 |doi=10.1051/0004-6361/202039063 |issn=0004-6361|arxiv=2007.15632 |bibcode=2021A&A...646A.140H }}</ref><ref>{{Cite web |last=Wood |first=Charlie |date=8 September 2020 |title=A New Cosmic Tension: The Universe Might Be Too Thin |url=https://www.quantamagazine.org/a-new-cosmic-tension-the-universe-might-be-too-thin-20200908/ |website=[[Quanta Magazine]]}}</ref> {{val|0.776|0.017}} (2022 [[Dark Energy Survey|DES]]),<ref>{{Cite journal |last1=Abbott |first1=T. M. C. |last2=Aguena |first2=M. |last3=Alarcon |first3=A. |last4=Allam |first4=S. |last5=Alves |first5=O. |last6=Amon |first6=A. |last7=Andrade-Oliveira |first7=F. |last8=Annis |first8=J. |last9=Avila |first9=S. |last10=Bacon |first10=D. |last11=Baxter |first11=E. |last12=Bechtol |first12=K. |last13=Becker |first13=M. R. |last14=Bernstein |first14=G. M. |last15=Bhargava |first15=S. |date=2022-01-13 |title=Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing |url=https://link.aps.org/doi/10.1103/PhysRevD.105.023520 |journal=Physical Review D |language=en |volume=105 |issue=2 |page=023520 |doi=10.1103/PhysRevD.105.023520 |issn=2470-0010|arxiv=2105.13549 |bibcode=2022PhRvD.105b3520A |hdl=11368/3013060 }}</ref> {{val|0.790|0.018|0.014}} (2023 DES+KIDS),<ref>{{Cite journal |last1=Dark Energy Survey |last2=Kilo-Degree Survey Collaboration |last3=Abbott |first3=T.M.C. |last4=Aguena |first4=M. |last5=Alarcon |first5=A. |last6=Alves |first6=O. |last7=Amon |first7=A. |last8=Andrade-Oliveira |first8=F. |last9=Asgari |first9=M. |last10=Avila |first10=S. |last11=Bacon |first11=D. |last12=Bechtol |first12=K. |last13=Becker |first13=M. R. |last14=Bernstein |first14=G. M. |last15=Bertin |first15=E. |date=2023-10-20 |title=DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys |url=https://astro.theoj.org/article/89164-des-y3-kids-1000-consistent-cosmology-combining-cosmic-shear-surveys |journal=The Open Journal of Astrophysics |volume=6 |page=36 |doi=10.21105/astro.2305.17173 |issn=2565-6120|arxiv=2305.17173 |bibcode=2023OJAp....6E..36D }}</ref> {{val|0.769|0.031|0.034}} – {{val|0.776|0.032|0.033}}<ref>{{Cite journal |last1=Li |first1=Xiangchong |last2=Zhang |first2=Tianqing |last3=Sugiyama |first3=Sunao |last4=Dalal |first4=Roohi |last5=Terasawa |first5=Ryo |last6=Rau |first6=Markus M. |last7=Mandelbaum |first7=Rachel |last8=Takada |first8=Masahiro |last9=More |first9=Surhud |last10=Strauss |first10=Michael A. |last11=Miyatake |first11=Hironao |last12=Shirasaki |first12=Masato |last13=Hamana |first13=Takashi |last14=Oguri |first14=Masamune |last15=Luo |first15=Wentao |date=2023-12-11 |title=Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions |url=https://link.aps.org/doi/10.1103/PhysRevD.108.123518 |journal=Physical Review D |language=en |volume=108 |issue=12 |page=123518 |doi=10.1103/PhysRevD.108.123518 |issn=2470-0010|arxiv=2304.00702 |bibcode=2023PhRvD.108l3518L }}</ref><ref>{{Cite journal |last1=Dalal |first1=Roohi |last2=Li |first2=Xiangchong |last3=Nicola |first3=Andrina |last4=Zuntz |first4=Joe |last5=Strauss |first5=Michael A. |last6=Sugiyama |first6=Sunao |last7=Zhang |first7=Tianqing |last8=Rau |first8=Markus M. |last9=Mandelbaum |first9=Rachel |last10=Takada |first10=Masahiro |last11=More |first11=Surhud |last12=Miyatake |first12=Hironao |last13=Kannawadi |first13=Arun |last14=Shirasaki |first14=Masato |last15=Taniguchi |first15=Takanori |date=2023-12-11 |title=Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear power spectra |url=https://link.aps.org/doi/10.1103/PhysRevD.108.123519 |journal=Physical Review D |language=en |volume=108 |issue=12 |page=123519 |doi=10.1103/PhysRevD.108.123519 |issn=2470-0010|arxiv=2304.00701 |bibcode=2023PhRvD.108l3519D }}</ref><ref>{{Cite journal |last=Yoon |first=Mijin |date=2023-12-11 |title=Inconsistency Turns Up Again for Cosmological Observations |url=https://physics.aps.org/articles/v16/193 |journal=Physics |language=en |volume=16 |issue=12 |pages=193 |doi=10.1103/PhysRevD.108.123519|arxiv=2304.00701 |bibcode=2023PhRvD.108l3519D }}</ref><ref>{{Cite web |last=Kruesi |first=Liz |date=19 January 2024 |title=Clashing Cosmic Numbers Challenge Our Best Theory of the Universe |url=https://www.quantamagazine.org/clashing-cosmic-numbers-challenge-our-best-theory-of-the-universe-20240119 |website=[[Quanta Magazine]]}}</ref> (2023 [https://hsc.mtk.nao.ac.jp/ssp/ HSC-SSP]), {{val|0.86|0.01}} (2024 [[EROSITA]]).<ref>{{Cite journal |last1=Ghirardini |first1=V. |last2=Bulbul |first2=E. |last3=Artis |first3=E. |last4=Clerc |first4=N. |last5=Garrel |first5=C. |last6=Grandis |first6=S. |last7=Kluge |first7=M. |last8=Liu |first8=A. |last9=Bahar |first9=Y. E. |last10=Balzer |first10=F. |last11=Chiu |first11=I. |last12=Comparat |first12=J. |last13=Gruen |first13=D. |last14=Kleinebreil |first14=F. |last15=Krippendorf |first15=S. |date=February 2024 |title=The SRG/EROSITA all-sky survey |journal=Astronomy & Astrophysics |volume=689 |pages=A298 |doi=10.1051/0004-6361/202348852 |arxiv=2402.08458}}</ref><ref>{{Cite web |last=Kruesi |first=Liz |date=4 March 2024 |title=Fresh X-Rays Reveal a Universe as Clumpy as Cosmology Predicts |url=https://www.quantamagazine.org/fresh-x-rays-reveal-a-universe-as-clumpy-as-cosmology-predicts-20240304/ |website=[[Quanta Magazine]]}}</ref> Values have also obtained using [[Peculiar velocity|peculiar velocities]], {{val|0.637|0.054}} (2020)<ref>{{Cite journal |last1=Said |first1=Khaled |last2=Colless |first2=Matthew |last3=Magoulas |first3=Christina |last4=Lucey |first4=John R |last5=Hudson |first5=Michael J |date=2020-09-01 |title=Joint analysis of 6dFGS and SDSS peculiar velocities for the growth rate of cosmic structure and tests of gravity |url=https://academic.oup.com/mnras/article/497/1/1275/5870121 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=497 |issue=1 |pages=1275–1293 |doi=10.1093/mnras/staa2032 |doi-access=free |issn=0035-8711|arxiv=2007.04993 }}</ref> and {{val|0.776|0.033}} (2020),<ref>{{Cite journal |last1=Boruah |first1=Supranta S |last2=Hudson |first2=Michael J |last3=Lavaux |first3=Guilhem |date=2020-09-21 |title=Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints |url=https://academic.oup.com/mnras/article/498/2/2703/5894929 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=498 |issue=2 |pages=2703–2718 |doi=10.1093/mnras/staa2485 |doi-access=free |issn=0035-8711|arxiv=1912.09383 }}</ref> among other methods.
 
=== Axis of evil ===
Line 298 ⟶ 295:
{{main|Cosmological lithium problem}}
 
The actual observable amount of lithium in the universe is less than the calculated amount from the ΛCDM model by a factor of 3–4.<ref name=fields11>{{cite journal |last=Fields |first=B. D. |date=2011 |title=The primordial lithium problem |journal=[[Annual Review of Nuclear and Particle Science]] |volume=61 |issue=1 |pages=47–68 |doi=10.1146/annurev-nucl-102010-130445| doi-access=free |arxiv=1203.3551 |bibcode=2011ARNPS..61...47F}}</ref><ref name="Snowmass21"/>{{rp|141}} If every calculation is correct, then solutions beyond the existing ΛCDM model might be needed.<ref name="fields11" />
 
=== Shape of the universe ===
{{main|Shape of the universe}}
The ΛCDM model assumes that the [[shape of the universe]] is of zero curvature (is flat) and has an undetermined topology. In 2019, interpretation of Planck data suggested that the curvature of the universe might be positive (often called "closed"), which would contradict the ΛCDM model.<ref>{{cite journal|url=https://www.nature.com/articles/s41550-019-0906-9|title=Planck evidence for a closed Universe and a possible crisis for cosmology|author1=Eleonora Di Valentino|author2=Alessandro Melchiorri|author3=Joseph Silk|journal=Nature Astronomy|volume=4|doi=10.1038/s41550-019-0906-9|arxiv=1911.02087|date=4 November 2019|issue=2|pages=196–203|s2cid=207880880|access-date=24 March 2022}}</ref><ref name="Snowmass21"/> Some authors have suggested that the Planck data detecting a positive curvature could be evidence of a local inhomogeneity in the curvature of the universe rather than the universe actually being globally a 3-[[manifold]] of positive curvature.<ref>{{cite journal|url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.081301|title=What if Planck's Universe isn't flat?|author1=Philip Bull|author2=Marc Kamionkowski|journal=Physical Review D|volume=87|issue=3|date=15 April 2013|page=081301|doi=10.1103/PhysRevD.87.081301|arxiv=1302.1617|bibcode=2013PhRvD..87h1301B|s2cid=118437535|access-date=24 March 2022}}</ref><ref name="Snowmass21"/>
 
=== Violations of the strong equivalence principle ===
{{main|Strong equivalence principle}}
The ΛCDM model assumes that the [[strong equivalence principle]] is true. However, in 2020 a group of astronomers analyzed data from the Spitzer Photometry and Accurate Rotation Curves (SPARC) sample, together with estimates of the large-scale external gravitational field from an all-sky galaxy catalog. They concluded that there was highly statistically significant evidence of violations of the strong equivalence principle in weak gravitational fields in the vicinity of rotationally supported galaxies.<ref>{{Cite journal|arxiv = 2009.11525|doi = 10.3847/1538-4357/abbb96|title = Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies|year = 2020|last1 = Chae|first1 = Kyu-Hyun|last2 = Lelli|first2 = Federico|last3 = Desmond|first3 = Harry|last4 = McGaugh|first4 = Stacy S.|last5 = Li|first5 = Pengfei|last6 = Schombert|first6 = James M.|journal = The Astrophysical Journal|volume = 904|issue = 1|page = 51|bibcode = 2020ApJ...904...51C|s2cid = 221879077 | doi-access=free }}</ref> They observed an effect inconsistent with [[tidal force|tidal effects]] in the ΛCDM model. These results have been challenged as failing to consider inaccuracies in the rotation curves and correlations between galaxy properties and clustering strength.<ref>{{Cite journal |last1=Paranjape |first1=Aseem |last2=Sheth |first2=Ravi K |date=2022-10-04 |title=The phenomenology of the external field effect in cold dark matter models |url=https://academic.oup.com/mnras/article/517/1/130/6713954 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=517 |issue=1 |pages=130–139 |doi=10.1093/mnras/stac2689 |doi-access=free |issn=0035-8711|arxiv=2112.00026 }}</ref> and as inconsistent with similar analysis of other galaxies.<ref>{{Cite journal |last1=Freundlich |first1=Jonathan |last2=Famaey |first2=Benoit |last3=Oria |first3=Pierre-Antoine |last4=Bílek |first4=Michal |last5=Müller |first5=Oliver |last6=Ibata |first6=Rodrigo |date=2022-02-01 |title=Probing the radial acceleration relation and the strong equivalence principle with the Coma cluster ultra-diffuse galaxies |url=https://www.aanda.org/articles/aa/abs/2022/02/aa42060-21/aa42060-21.html |journal=Astronomy & Astrophysics |language=en |volume=658 |pages=A26 |doi=10.1051/0004-6361/202142060 |issn=0004-6361 |quote=We hence do not see any evidence for a violation of the strong equivalence principle in Coma cluster UDGs, contrarily to, for instance, Chae et al. (2020, 2021), for disc galaxies in the field. Our work extends that of Bílek et al. (2019b) and Haghi et al. (2019a), which is limited to DF44 and makes the result all the more compelling. We recall that the MOND predictions do not involve any free parameter.
 
|doi-access=free |arxiv=2109.04487 |bibcode=2022A&A...658A..26F }}</ref>
 
=== Cold dark matter discrepancies ===
Line 314 ⟶ 305:
Several discrepancies between the predictions of [[cold dark matter]] in the ΛCDM model and observations of galaxies and their clustering have arisen. Some of these problems have proposed solutions, but it remains unclear whether they can be solved without abandoning the ΛCDM model.<ref>{{Cite journal |arxiv=1006.1647 |title=Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation |year=2010 |last1=Kroupa |first1=P. |last2=Famaey |first2=B. |last3=de Boer |first3=Klaas S. |last4=Dabringhausen |first4=Joerg |last5=Pawlowski |first5=Marcel |last6=Boily |first6=Christian |last7=Jerjen |first7=Helmut |last8=Forbes |first8=Duncan |last9=Hensler |first9=Gerhard |journal=Astronomy and Astrophysics |volume=523 |pages=32–54 |doi=10.1051/0004-6361/201014892 |bibcode=2010A&A...523A..32K|s2cid=11711780 }}</ref>
 
[[Mordehai Milgrom|Milgrom]], [[Stacy McGaugh|McGaugh]], and [[Pavel Kroupa|Kroupa]] have criticized the dark matter portions of the theory from the perspective of [[galaxy formation]] models and supporting the alternative [[modified Newtonian dynamics]] (MOND) theory, which requires a modification of the [[Einstein field equations]] and the [[Friedmann equations]] as seen in proposals such as [[modified gravity theory]] (MOG theory) or [[tensor–vector–scalar gravity]] theory (TeVeS theory).{{cncitation needed|date=January 2025}} Other proposals by theoretical astrophysicists of cosmological alternatives to Einstein's general relativity that attempt to account for dark energy or dark matter include [[f(R) gravity]], [[Scalar–tensor theory|scalar–tensor theories]] such as {{ill|galileon|ko}} theories (see [[Galilean invariance]]), [[brane cosmology|brane cosmologies]], the [[DGP model]], and [[massive gravity]] and its extensions such as [[bimetric theory|bimetric gravity]].{{citation needed|date=February 2024}}
 
==== Cuspy halo problem ====
Line 327 ⟶ 318:
Dwarf galaxies around the [[Milky Way]] and [[Andromeda Galaxy|Andromeda]] galaxies are observed to be orbiting in thin, planar structures whereas the simulations predict that they should be distributed randomly about their parent galaxies.<ref name=Pawlowski>{{cite journal |first1=Marcel |last1=Pawlowski |display-authors=etal |title=Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies |journal=Monthly Notices of the Royal Astronomical Society |volume=442 |issue=3 |pages=2362–2380 |year=2014 |arxiv=1406.1799|doi=10.1093/mnras/stu1005 |doi-access=free |bibcode=2014MNRAS.442.2362P }}</ref> However, latest research suggests this seemingly bizarre alignment is just a quirk which will dissolve over time.<ref name="Sawala">{{cite journal |first1=Till |last1=Sawala |first2=Marius |last2=Cautun |first3=Carlos |last3=Frenk |display-authors=etal |title=The Milky Way's plane of satellites: consistent with ΛCDM|journal=Nature Astronomy |year=2022 |volume=7 |issue=4 |pages=481–491 |arxiv=2205.02860|doi=10.1038/s41550-022-01856-z |bibcode=2023NatAs...7..481S|s2cid=254920916 }}</ref>
 
==== High-velocity galaxyredshift problemgalaxies ====
GalaxiesThere inhas thebeen [[NGCdebate 3109]]on associationwhether areearly movingmassive awaygalaxies tooand rapidlysupermassive toblack beholes consistent with expectationsare in theconflict ΛCDMwith model.LCDM<ref>{{Cite journal |last1=BanikSteinhardt |first1=IndranilCharles. L. |last2=ZhaoCapak |first2=HPeter |datelast3=2018-01-21Masters |titlefirst3=ADan plane|last4=Speagle of|first4=Josh highS. velocity|date=2016-06-10 galaxies|title=The acrossImpossibly theEarly Galaxy LocalProblem Group|journal=MonthlyThe NoticesAstrophysical ofJournal the Royal Astronomical Society|volume=473824 |issue=31 |pages=4033–405421 |doi=10.10933847/mnras0004-637X/stx2596824/1/21 |arxiv=17011506.0655901377 |bibcode=2018MNRAS2016ApJ.473.4033B|issn=0035-8711.824...21S |doi-access=free |issn=0004-637X}}</ref>. InTo thismake framework,such [[NGCa 3109]]comparison, isone toomust massive and distant frommodel the [[Localcomplex Group]]physics forof itgalaxy toformation, haveas beenwell flung out in a three-body interaction involvingas the [[Milkyunderlying Way]]LCDM or [[Andromeda Galaxy]]cosmology.<ref>{{Cite journal |last1=BanikBehroozi |first1=IndranilPeter |last2=HaslbauerSilk |first2=Moritz|last3=Pawlowski|first3=MarcelJoseph S.|last4=Famaey|first4=Benoit|last5=Kroupa|first5=Pavel|date=20212018-0607-2111 |title=OnThe themost absencemassive ofgalaxies backsplashand analoguesblack toholes NGCallowed 3109 in theby ΛCDM framework|url=https://academic.oup.com/mnras/article/477/4/5382/4975781 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=503477 |issue=4 |pages=6170–61865382–5387 |doi=10.1093/mnras/stab751sty945 |arxivdoi-access=2105.04575|bibcode=2021MNRAS.503.6170Bfree |issn=0035-8711|doi-access=free}}</ref> Tests using galaxies are therefore less direct, as they require assumptions about how galaxies form.
 
Using some of the first data from the [[James Webb Space Telescope]], a team of astronomers selected candidate massive galaxies in the early universe.<ref>{{Cite journal |last1=Labbé |first1=Ivo |last2=van Dokkum |first2=Pieter |last3=Nelson |first3=Erica |last4=Bezanson |first4=Rachel |last5=Suess |first5=Katherine A. |last6=Leja |first6=Joel |last7=Brammer |first7=Gabriel |last8=Whitaker |first8=Katherine |last9=Mathews |first9=Elijah |last10=Stefanon |first10=Mauro |last11=Wang |first11=Bingjie |date=April 2023 |title=A population of red candidate massive galaxies ~600 Myr after the Big Bang |url=https://www.nature.com/articles/s41586-023-05786-2 |journal=Nature |language=en |volume=616 |issue=7956 |pages=266–269 |doi=10.1038/s41586-023-05786-2 |pmid=36812940 |arxiv=2207.12446 |bibcode=2023Natur.616..266L |issn=1476-4687}}</ref> The existence of such massive galaxies in the early universe would challenge standard cosmology. <ref name="Boylan-Kolchin">{{cite journal|title=Stress testing ΛCDM with high-redshift galaxy candidates|first=Michael|last=Boylan-Kolchin|journal=Nature Astronomy |year=2023 |volume=7 |issue=6 |pages=731–735 |doi=10.1038/s41550-023-01937-7 |pmid=37351007 |pmc=10281863 |arxiv=2208.01611|bibcode=2023NatAs...7..731B |s2cid=251252960 }}</ref> Follow up spectroscopy revealed that most of these objects have [[Active galactic nucleus|Active Galactic Nuclei]], which boosts the galaxies brightness and caused the masses to be overestimated. <ref>{{Cite web |date=2025-07-01 |title=JWST's early galaxies didn't break the Universe. They revealed it. |url=https://bigthink.com/starts-with-a-bang/jwst-break-universe-revealed/ |access-date=2025-07-24 |website=Big Think |language=en-US}}</ref><ref>{{Cite journal |last1=Kocevski |first1=Dale D. |last2=Finkelstein |first2=Steven L. |last3=Barro |first3=Guillermo |last4=Taylor |first4=Anthony J. |last5=Calabrò |first5=Antonello |last6=Laloux |first6=Brivael |last7=Buchner |first7=Johannes |last8=Trump |first8=Jonathan R. |last9=Leung |first9=Gene C. K. |last10=Yang |first10=Guang |last11=Dickinson |first11=Mark |last12=Pérez-González |first12=Pablo G. |last13=Pacucci |first13=Fabio |last14=Inayoshi |first14=Kohei |last15=Somerville |first15=Rachel S. |date=June 2025 |title=The Rise of Faint, Red Active Galactic Nuclei at z &gt; 4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields |journal=The Astrophysical Journal |language=en |volume=986 |issue=2 |pages=126 |doi=10.3847/1538-4357/adbc7d |arxiv=2404.03576 |bibcode=2025ApJ...986..126K |doi-access=free |issn=0004-637X}}</ref> The high redshift galaxies which have been spectroscopically confirmed, such as [[JADES-GS-z13-0]], are much less massive and are consistent with the predictions from LCDM simulations run before JWST<ref>{{Cite journal |last1=McCaffrey |first1=Joe |last2=Hardin |first2=Samantha |last3=Wise |first3=John H. |last4=Regan |first4=John A. |date=2023-09-27 |title=No Tension: JWST Galaxies at \(z > 10\) Consistent with Cosmological Simulations |url=http://localhost:58547/article/88302-no-tension-jwst-galaxies-at-z-10-consistent-with-cosmological-simulations,%20https://astro.theoj.org/article/88302-no-tension-jwst-galaxies-at-z-10-consistent-with-cosmological-simulations |journal=The Open Journal of Astrophysics |language=en |volume=6 |page=47 |doi=10.21105/astro.2304.13755 |arxiv=2304.13755 |bibcode=2023OJAp....6E..47M }}</ref>. As a population, the confirmed high redshift galaxies are brighter than expected from simulations, but not to the extent that they violate cosmological limits.<ref>{{Cite journal |last1=Xiao |first1=Mengyuan |last2=Oesch |first2=Pascal A. |last3=Elbaz |first3=David |last4=Bing |first4=Longji |last5=Nelson |first5=Erica J. |last6=Weibel |first6=Andrea |last7=Illingworth |first7=Garth D. |last8=van Dokkum |first8=Pieter |last9=Naidu |first9=Rohan P. |last10=Daddi |first10=Emanuele |last11=Bouwens |first11=Rychard J. |last12=Matthee |first12=Jorryt |last13=Wuyts |first13=Stijn |last14=Chisholm |first14=John |last15=Brammer |first15=Gabriel |date=November 2024 |title=Accelerated formation of ultra-massive galaxies in the first billion years |url=https://ui.adsabs.harvard.edu/abs/2024Natur.635..311X/abstract |journal=Nature |language=en |volume=635 |issue=8038 |pages=311–315 |doi=10.1038/s41586-024-08094-5 |pmid=39537883 |arxiv=2309.02492 |bibcode=2024Natur.635..311X |issn=0028-0836}}</ref><ref>{{Citation |last1=Yung |first1=L. Y. Aaron |title=$Λ$CDM is still not broken: empirical constraints on the star formation efficiency at $z \sim 12-30$ |date=2025 |url=https://arxiv.org/abs/2504.18618 |access-date=2025-07-24 |arxiv=2504.18618 |last2=Somerville |first2=Rachel S. |last3=Iyer |first3=Kartheik G.}}</ref> Theorists are studying many possible explanations, including modifying cosmology, more efficient star formation and different stellar populations.<ref>{{Cite journal |last1=Sun |first1=Guochao |last2=Faucher-Giguère |first2=Claude-André |last3=Hayward |first3=Christopher C. |last4=Shen |first4=Xuejian |last5=Wetzel |first5=Andrew |last6=Cochrane |first6=Rachel K. |date=2023-10-01 |title=Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn |journal=The Astrophysical Journal Letters |volume=955 |issue=2 |pages=L35 |doi=10.3847/2041-8213/acf85a |arxiv=2307.15305 |bibcode=2023ApJ...955L..35S |doi-access=free |issn=2041-8205}}</ref><ref>{{Cite journal |last1=Dekel |first1=Avishai |last2=Sarkar |first2=Kartick C |last3=Birnboim |first3=Yuval |last4=Mandelker |first4=Nir |last5=Li |first5=Zhaozhou |date=2023-06-08 |title=Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts |url=https://academic.oup.com/mnras/article/523/3/3201/7179993 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=523 |issue=3 |pages=3201–3218 |doi=10.1093/mnras/stad1557 |doi-access=free |issn=0035-8711}}</ref>
==== Galaxy morphology problem ====
If galaxies grew hierarchically, then massive galaxies required many mergers. [[Galaxy merger|Major mergers]] inevitably create a classical [[Bulge (astronomy)|bulge]]. On the contrary, about 80% of observed galaxies give evidence of no such bulges, and giant pure-disc galaxies are commonplace.<ref name="kormendy2010">{{cite journal |last1=Kormendy |first1=J. |author1-link=John Kormendy |last2=Drory |first2=N. |last3=Bender |first3=R. |last4=Cornell |first4=M.E. |title=Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering |year=2010 |journal=[[The Astrophysical Journal]] |volume=723 |issue=1 |pages=54–80 |doi=10.1088/0004-637X/723/1/54 |arxiv=1009.3015 |bibcode=2010ApJ...723...54K|s2cid=119303368 }}</ref> The tension can be quantified by comparing the observed distribution of galaxy shapes today with predictions from high-resolution hydrodynamical cosmological simulations in the ΛCDM framework, revealing a highly significant problem that is unlikely to be solved by improving the resolution of the simulations.<ref name="Haslbauer2022">{{cite journal |last1=Haslbauer|first1=M|last2=Banik|first2=I|last3=Kroupa|first3=P|last4=Wittenburg|first4=N|last5=Javanmardi|first5=B|title=The High Fraction of Thin Disk Galaxies Continues to Challenge ΛCDM Cosmology|date=2022-02-01|journal=[[The Astrophysical Journal]]|volume=925|issue=2|page=183|doi=10.3847/1538-4357/ac46ac|issn=1538-4357|arxiv=2202.01221|bibcode=2022ApJ...925..183H|doi-access=free}}</ref> The high bulgeless fraction was nearly constant for 8&nbsp;billion years.<ref name="sachdeva2016">{{cite journal |last1=Sachdeva |first1=S. |last2=Saha |first2=K. |title=Survival of pure disk galaxies over the last 8&nbsp;billion years |year=2016 |journal=The Astrophysical Journal Letters |volume=820 |issue=1 |pages=L4 |doi=10.3847/2041-8205/820/1/L4 |arxiv=1602.08942 |bibcode=2016ApJ...820L...4S|s2cid=14644377 |doi-access=free }}</ref>
 
==== Fast galaxy bar problem ====
If galaxies were embedded within massive halos of [[cold dark matter]], then the bars that often develop in their central regions would be slowed down by [[dynamical friction]] with the halo. This is in serious tension with the fact that observed galaxy bars are typically fast.<ref name="Roshan2021">{{Cite journal|last1=Mahmood|first1=R|last2=Ghafourian|first2=N|last3=Kashfi|first3=T|last4=Banik|first4=I|last5=Haslbauer|first5=M|last6=Cuomo|first6=V|last7=Famaey|first7=B|last8=Kroupa|first8=P|date=2021-11-01|title=Fast galaxy bars continue to challenge standard cosmology|journal=Monthly Notices of the Royal Astronomical Society|volume=508|issue=1|pages=926–939|doi=10.1093/mnras/stab2553|doi-access=free|arxiv=2106.10304|bibcode=2021MNRAS.508..926R|hdl=10023/24680|issn=0035-8711}}</ref>
 
==== Small scale crisis ====
Comparison of the model with observations may have some problems on sub-galaxy scales, possibly predicting [[Dwarf galaxy problem|too many dwarf galaxies]] and too much dark matter in the innermost regions of galaxies. This problem is called the "small scale crisis".<ref>{{Cite journal
| title =Synopsis: Tackling the Small-Scale Crisis
|journal = Physical Review D|volume = 95|issue = 12|page = 121302| last =Rini
| first =Matteo
|doi = 10.1103/PhysRevD.95.121302|year = 2017|arxiv = 1703.10559|bibcode = 2017PhRvD..95l1302N|s2cid = 54675159}}</ref> These small scales are harder to resolve in computer simulations, so it is not yet clear whether the problem is the simulations, non-standard properties of dark matter, or a more radical error in the model.
 
==== High redshift galaxies ====
Observations from the [[James Webb Space Telescope]] have resulted in various galaxies confirmed by [[spectroscopy]] at high redshift, such as [[JADES-GS-z13-0]] at [[cosmological redshift]] of 13.2.<ref name="NASA-milestone">{{cite web|title = NASA's Webb Reaches New Milestone in Quest for Distant Galaxies|url = https://blogs.nasa.gov/webb/2022/12/09/nasas-webb-reaches-new-milestone-in-quest-for-distant-galaxies/|first = Thaddeus|last = Cesari|date = 9 December 2022|access-date = 9 December 2022}}</ref><ref name="Curtis-Lake2022">{{cite web|display-authors = etal|first1 = Emma|last1 = Curtis-Lake|title = Spectroscopy of four metal-poor galaxies beyond redshift ten|url = https://webbtelescope.org/files/live/sites/webb/files/home/webb-science/early-highlights/_documents/2022-061-jades/JADES_CurtisLake.pdf|date = December 2022| arxiv=2212.04568 }}</ref> Other candidate galaxies which have not been confirmed by spectroscopy include [[CEERS-93316]] at cosmological [[redshift]] of 16.4.
 
Existence of surprisingly massive galaxies in the early universe challenges the preferred models describing how dark matter halos drive galaxy formation. It remains to be seen whether a revision of the Lambda-CDM model with parameters given by Planck Collaboration is necessary to resolve this issue. The discrepancies could also be explained by particular properties (stellar masses or effective volume) of the candidate galaxies, yet unknown force or particle outside of the [[Standard Model]] through which dark matter interacts, more efficient baryonic matter accumulation by the dark matter halos, early dark energy models,<ref name="SmithEtAl-2022">{{cite journal|title=Hints of early dark energy in Planck, SPT, and ACT data: New physics or systematics?|author1=Smith, Tristian L.|author2=Lucca, Matteo|author3=Poulin, Vivian|author4=Abellan, Guillermo F.|author5=Balkenhol, Lennart|author6=Benabed, Karim|author7=Galli, Silvia|author8=Murgia, Riccardo|journal=Physical Review D|volume=106|issue=4|date=August 2022|page=043526 |doi=10.1103/PhysRevD.106.043526|arxiv=2202.09379|bibcode=2022PhRvD.106d3526S|s2cid=247011465 }}</ref> or the hypothesized long-sought [[Population III stars]].<ref name="Boylan-Kolchin">{{cite journal|title=Stress testing ΛCDM with high-redshift galaxy candidates|first=Michael|last=Boylan-Kolchin|journal=Nature Astronomy |year=2023 |volume=7 |issue=6 |pages=731–735 |doi=10.1038/s41550-023-01937-7 |pmid=37351007 |pmc=10281863 |arxiv=2208.01611|bibcode=2023NatAs...7..731B |s2cid=251252960 }}</ref><ref name="SciAm2022">{{cite web|title=Astronomers Grapple with JWST's Discovery of Early Galaxies|url=https://www.scientificamerican.com/article/astronomers-grapple-with-jwsts-discovery-of-early-galaxies1/|last=O'Callaghan|first=Jonathan|website=[[Scientific American]] |date=6 December 2022|access-date=10 December 2022}}</ref><ref name="BehrooziEtAl">{{cite journal|title=The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1|author1= Behroozi, Peter|author2=Conroy, Charlie|author3=Wechsler, Risa H.|author4=Hearin, Andrew|author5=Williams, Christina C.|author6=Moster, Benjamin P.|author7=Yung, L. Y. Aaron|author8=Somerville, Rachel S.|author9=Gottlöber, Stefan|author10=Yepes, Gustavo|author11=Endsley, Ryan|journal=Monthly Notices of the Royal Astronomical Society|volume=499|issue=4|pages=5702–5718|date=December 2020|doi=10.1093/mnras/staa3164|doi-access= free|arxiv=2007.04988|bibcode=2020MNRAS.499.5702B}}</ref><ref name="SpringelHernquist">{{cite journal|title=The history of star formation in a Λ cold dark matter universe|author1=Volker Springel|author2=Lars Hernquist|journal=Monthly Notices of the Royal Astronomical Society|volume=339|issue=2|pages=312–334|date=February 2003|doi=10.1046/j.1365-8711.2003.06207.x|doi-access=free |arxiv=astro-ph/0206395|bibcode=2003MNRAS.339..312S |s2cid=8715136 }}</ref>
 
=== Missing baryon problem ===
Line 352 ⟶ 327:
Massimo Persic and Paolo Salucci<ref>{{Cite journal|last1=Persic|first1=M.|last2=Salucci|first2=P.|date=1992-09-01|title=The baryon content of the Universe|journal=Monthly Notices of the Royal Astronomical Society|volume=258|issue=1|pages=14P–18P|doi=10.1093/mnras/258.1.14P|arxiv=astro-ph/0502178|bibcode=1992MNRAS.258P..14P |issn=0035-8711|doi-access=free}}</ref> first estimated the baryonic density today present in ellipticals, spirals, groups and clusters of galaxies.
They performed an integration of the baryonic mass-to-light ratio over luminosity (in the following <math display="inline"> M_{\rm b}/L </math>), weighted with the luminosity function <math display="inline">\phi(L)</math> over the previously mentioned classes of astrophysical objects:
 
: <math>\rho_{\rm b} = \sum \int L\phi(L) \frac{M_{\rm b}}{L} \, dL.</math>
<math display="block">\rho_{\rm b} = \sum \int L\phi(L) \frac{M_{\rm b}}{L} \, dL.</math>
 
The result was:
 
: <math> \Omega_{\rm b}=\Omega_*+\Omega_\text{gas}=2.2\times10^{-3}+1.5\times10^{-3}\;h^{-1.3}\simeq0.003 ,</math>
<math display="block"> \Omega_{\rm b}=\Omega_*+\Omega_\text{gas}=2.2\times10^{-3}+1.5\times10^{-3}\;h^{-1.3}\simeq0.003 ,</math>
where <math> h\simeq0.72 </math>.
 
where <math> h\simeq 0.72 </math>.
 
Note that this value is much lower than the prediction of standard cosmic nucleosynthesis <math> \Omega_{\rm b}\simeq0.0486 </math>, so that stars and gas in galaxies and in galaxy groups and clusters account for less than 10% of the primordially synthesized baryons. This issue is known as the problem of the "missing baryons".
Line 362 ⟶ 340:
The missing baryon problem is claimed to be resolved. Using observations of the kinematic [[Sunyaev–Zeldovich effect|Sunyaev–Zel'dovich effect]] spanning more than 90% of the lifetime of the Universe, in 2021 astrophysicists found that approximately 50% of all baryonic matter is outside [[dark matter halo]]es, filling the space between galaxies.<ref>{{Cite journal|last1=Chaves-Montero|first1=Jonás|last2=Hernández-Monteagudo|first2=Carlos|last3=Angulo|first3=Raúl E|last4=Emberson|first4=J D|date=2021-03-25|title=Measuring the evolution of intergalactic gas from z = 0 to 5 using the kinematic Sunyaev–Zel'dovich effect|url=https://academic.oup.com/mnras/article/503/2/1798/6184230|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=503|issue=2|pages=1798–1814|doi=10.1093/mnras/staa3782|doi-access=free |arxiv=1911.10690 |issn=0035-8711}}</ref> Together with the amount of baryons inside galaxies and surrounding them, the total amount of baryons in the late time Universe is compatible with early Universe measurements.
 
=== UnfalsifiabilityConventionalism ===
It has been argued that the ΛCDM model ishas built upon a foundation ofadopted [[conventionalism|conventionalist stratagems]], rendering it [[falsifiability|unfalsifiable]] in the sense defined by [[Karl Popper]]. When faced with new data not in accord with a prevailing model, the conventionalist will find ways to adapt the theory rather than declare it false. Thus dark matter was added after the observations of anomalous galaxy rotation rates. [[Thomas Kuhn]] viewed the process differently, as "problem solving" within the existing paradigm.<ref>{{Cite journal | doi=10.1016/j.shpsb.2016.12.002| title=Cosmology and convention| journal=Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics| volume=57| pages=41–52| year=2017| last1=Merritt| first1=David| arxiv=1703.02389| bibcode=2017SHPMP..57...41M| s2cid=119401938}}</ref>
 
== Extended models ==
Line 399 ⟶ 377:
Extended models allow one or more of the "fixed" parameters above to vary, in addition to the basic six; so these models join smoothly to the basic six-parameter model in the limit that the additional parameter(s) approach the default values. For example, possible extensions of the simplest ΛCDM model allow for spatial curvature (<math>\Omega_\text{tot}</math> may be different from 1); or [[quintessence (physics)|quintessence]] rather than a [[cosmological constant]] where the [[Equation of state (cosmology)|equation of state]] of dark energy is allowed to differ from&nbsp;−1. Cosmic inflation predicts tensor fluctuations ([[gravitational wave]]s). Their amplitude is parameterized by the tensor-to-scalar ratio (denoted <math>r</math>), which is determined by the unknown energy scale of inflation. Other modifications allow [[hot dark matter]] in the form of [[neutrino]]s more massive than the minimal value, or a running spectral index; the latter is generally not favoured by simple cosmic inflation models.
 
Allowing additional variable parameter(s) will generally ''increase'' the uncertainties in the standard six parameters quoted above, and may also shift the central values slightly. The table belowabove shows results for each of the possible "6+1" scenarios with one additional variable parameter; this indicates that, as of 2015, there is no convincing evidence that any additional parameter is different from its default value.
 
Some researchers have suggested that there is a running spectral index, but no statistically significant study has revealed one. Theoretical expectations suggest that the tensor-to-scalar ratio <math>r</math> should be between 0 and 0.3, and the latest results are within those limits.
Line 427 ⟶ 405:
* [http://lambda.gsfc.nasa.gov/product/map/dr3/parameters_summary.cfm WMAP estimated cosmological parameters/Latest Summary]
 
{{Portal bar|Physics|Mathematics|Astronomy|Stars|Spaceflight|Outer space|Solar System}}
 
{{DEFAULTSORT:Lambda-Cdm Model}}