Content deleted Content added
m →Method of proof: Fixed typo Tags: canned edit summary Mobile edit Mobile app edit Android app edit App section source |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 690/1032 |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 7:
This is a fundamental result in [[Diophantine approximation]], showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality
:<math>
is satisfied by infinitely many integers ''p'' and ''q''. This shows that any irrational number has [[irrationality measure#irrationality_exponent|irrationality exponent]] at least 2.
The [[Thue–Siegel–Roth theorem]] says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2. The Thue–Siegel–Roth theorem uses advanced techniques of number theory, but many simpler numbers such as the [[golden ratio]] <math>(1+\sqrt{5})/2</math> can be much more easily verified to be inapproximable beyond exponent 2.
Line 15:
==Simultaneous version==
The simultaneous version of the Dirichlet's approximation theorem states that given real numbers <math>\alpha_1, \ldots, \alpha_d</math> and a natural number <math>N</math> then there are integers <math>p_1, \ldots, p_d, q\in\Z,1\le q\leq N
==Method of proof==
Line 58:
{{collapse bottom}}
This theorem forms the basis for [[Wiener's attack]], a polynomial-time exploit of the [[RSA (cryptosystem)|RSA cryptographic protocol]] that can occur for an injudicious choice of public and private keys (specifically, this attack succeeds if the prime factors of the public key ''n'' = ''pq'' satisfy ''p'' < ''q'' < 2''p'' and the private key ''d'' is less than (1/3)''n''<sup>1/4</sup>).<ref>{{cite journal|last=Wiener|first=Michael J.|date=1990|title=Cryptanalysis of short RSA secret exponents
==See also==
|