Content deleted Content added
No edit summary |
|||
Line 14:
==Example 1: 1D Linear BVP==
<math display="block">\begin{cases}
u(0) = 0, \\
The exact solution is:<br>▼
u(1) = 1.
\end{cases} </math>
Subdivide the ___domain into two subdomains, one from <math>\left[0,\frac{1}{2}\right]</math> and another from <math>\left[\frac{1}{2},1\right]</math>. In the left subdomain define the interpolating function <math> v_1(x) </math> and in the right define <math> v_2 (x) </math>. At the interface between these two subdomains the following interface conditions shall be imposed:<br>▼
<math> v_1\left(\frac{1}{2}\right)=v_2 \left(\frac{1}{2}\right) </math><br>▼
<math display="block">
▲Subdivide the ___domain into two subdomains, one from <math>\left[0,\
<math display="block">\begin{align}
v_1'{\left(\frac{1}{2}\right)} &= v_2'{\left(\frac{1}{2}\right)}
\end{align}</math>
Let the interpolating functions be defined as:<br>
<math display="block">\begin{align}
<math> v_1 (x) =\sum_{n=0}^{N} u_{n} T_n (y_1(x)) </math><br>▼
y_2(x) &= 4x-3
Where <math> T_n (y) </math> is the nth cardinal function of the chebyshev polynomials of the first kind with input argument y.<br>▼
\end{align} </math>
If N=4 then the following approximation is obtained by this scheme:<br>▼
▲Where <math> T_n (y) </math> is the nth cardinal function of the
<math display="block">\begin{align}
u_1 &= 0.06236, &
u_2 &= 0.21495, \\
u_3 &= 0.37428, &
u_4 &= 0.44341, \\
This was obtained with the following MATLAB code. <br>▼
u_5 &= 0.51492, &
u_6 &= 0.69972, \\
u_7 &= 0.90645.
\end{align}</math>
<syntaxhighlight lang="matlab">
clear all
Line 57 ⟶ 67:
uex = (exp(x)-exp(-x))./(exp(1)-exp(-1));
</syntaxhighlight>
==See also==▼
* [[Multigrid method]]▼
== Related Books ==
{{refbegin}}
* Barry Smith, Petter Bjørstad, and William Gropp: ''Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations'', Cambridge Univ. Press, ISBN 0-521-49589-X (1996).
{{refend}}
▲==See also==
▲*[[Multigrid method]]
{{Numerical PDE}}▼
== External links ==
Line 77 ⟶ 87:
| archive-date = 2021-01-26
}}
▲{{Numerical PDE}}
{{DEFAULTSORT:Domain Decomposition Methods}}
|