Content deleted Content added
m →History: formatting fix |
Guy Harris (talk | contribs) →Variable SMP: As "not only" was removed, "but" should also be removed. |
||
(9 intermediate revisions by 6 users not shown) | |||
Line 1:
{{Short description|
{{more citations needed|date=November 2012}}▼
{{Multiple issues|
▲{{more citations needed|date=November 2012}}
{{Expert needed|Computing|date=June 2025}}
}}
[[File:SMP - Symmetric Multiprocessor System.svg|thumb|upright=2|Diagram of a symmetric multiprocessing system]]
'''Symmetric multiprocessing''' or '''shared-memory multiprocessing'''<ref>{{cite book |last1=Patterson |first1=David |last2=Hennessy |first2=John |author-link1=David Patterson (computer scientist) |author-link2=John L. Hennessy |date=2018 |title=Computer Organisation and Design: The Hardware/Software Interface |___location=Cambridge, United States |publisher=Morgan Kaufmann |page=509 |isbn=978-0-12-812275-4|edition=RISC-V }}</ref> ('''SMP''') involves a [[multiprocessor]] computer hardware and software architecture where two or more identical processors are connected to a single, shared [[main memory]], have full access to all input and output devices, and are controlled by a single operating system instance that treats all processors equally, reserving none for special purposes. Most multiprocessor systems today use an SMP architecture. In the case of [[multi-core processor]]s, the SMP architecture applies to the cores, treating them as separate processors.
Line 14 ⟶ 17:
Processors may be interconnected using buses, [[crossbar switch]]es or on-chip mesh networks. The bottleneck in the scalability of SMP using buses or crossbar switches is the bandwidth and power consumption of the interconnect among the various processors, the memory, and the disk arrays. Mesh architectures avoid these bottlenecks, and provide nearly linear scalability to much higher processor counts at the sacrifice of programmability:
<blockquote>Serious programming challenges remain with this kind of architecture because it requires two distinct modes of programming
SMP systems allow any processor to work on any task no matter where the data for that task is located in memory, provided that each task in the system is not in execution on two or more processors at the same time. With proper [[operating system]] support, SMP systems can easily move tasks between processors to balance the workload efficiently.
Line 82 ⟶ 85:
== Variable SMP ==
Variable Symmetric Multiprocessing (vSMP) is a specific mobile use case technology initiated by NVIDIA. This technology includes an extra fifth core in a quad-core device, called the Companion core, built specifically for executing tasks at a lower frequency during mobile active standby mode, video playback, and music playback.
Project Kal-El ([[Tegra 3]]),<ref name="AutoMQ-4" /> patented by NVIDIA, was the first SoC (System on Chip) to implement this new vSMP technology. This technology
== See also ==
|