Content deleted Content added
rm non-reader-facing comment, ce |
Reverted 1 edit by Owen Reich (talk): 3 wrong links |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 44:
defines a [[ring homomorphism]] from <math>R</math> into <math>S^{-1}R,</math> which is [[injective function|injective]] if and only if {{mvar|S}} does not contain any zero divisors.
If <math>0\in S,</math> then <math>S^{-1}R</math> is the [[zero ring]] that has only one unique element {{math|0}}
If {{mvar|S}} is the set of all [[zero divisor|regular elements]] of {{mvar|R}} (that is the elements that are not zero divisors), <math>S^{-1}R</math> is called the [[total ring of fractions]] of {{mvar|R}}.
Line 65:
*If {{mvar|R}} is an [[integral ___domain]], and <math>S=R\setminus \{0\},</math> then <math>S^{-1}R</math> is the [[field of fractions]] of {{mvar|R}}. The preceding example is a special case of this one.
*If {{mvar|R}} is a [[commutative ring]], and if {{mvar|S}} is the subset of its elements that are not [[zero divisor]]s, then <math>S^{-1}R</math> is the [[total ring of fractions]] of {{mvar|R}}. In this case, {{mvar|S}} is the largest multiplicative set such that the homomorphism <math>R\to S^{-1}R</math> is injective. The preceding example is a special case of this one.
*If <math>x</math> is an element of a commutative ring {{mvar|R}} and <math>S=\{1, x, x^2, \ldots\},</math> then <math>S^{-1}R</math> can be identified (is [[canonical isomorphism|canonically isomorphic]] to) <math>R[x^{-1}]=R[s]/(xs-1).</math> (The proof consists of showing that this ring satisfies the above universal property.) The ring <math>S^{-1}R</math> is generally denoted <math>R_x</math>.<ref>This definition makes sense even if ''x'' is [[nilpotent]], which would make ''S'' a finite set that contains 0, but in that case, <math>R_x=S^{-1}R =0</math>.</ref> This sort of localization plays a fundamental role in the definition of an [[affine scheme]].
*If <math>\mathfrak p</math> is a [[prime ideal]] of a commutative ring {{mvar|R}}, the [[set complement]] <math>S=R\setminus \mathfrak p</math> of <math>\mathfrak p</math> in {{mvar|R}} is a multiplicative set (by the definition of a prime ideal). The ring <math>S^{-1}R</math> is a [[local ring]] that is generally denoted <math>R_\mathfrak p,</math> and called ''the local ring of {{mvar|R}} at'' <math>\mathfrak p.</math> This sort of localization is fundamental in [[commutative algebra]], because many properties of a commutative ring can be read on its local rings. Such a property is often called a [[local property]]. For example, a ring is [[regular ring|regular]] if and only if all its local rings are regular.
Line 122:
==Localization of a module ==
Let
:<math>u(sn-tm)=0.</math>
Addition and scalar multiplication are defined as for usual fractions (in the following formula, <math>r\in R,</math> <math>s,t\in S,</math> and <math>m,n\in M</math>):
:<math>\frac{m}{s} + \frac{n}{t} = \frac{tm+sn}{st},</math>
:<math>\frac rs \frac{m}{t} = \frac{r m}{st}.</math>
Moreover,
:<math> r\, \frac{m}{s} = \frac r1 \frac ms = \frac{rm}s.</math>
Line 200:
* {{cite book|last=Cohn|first=P. M.|title=Algebra |volume=3 |edition=2nd |year=1991|publisher=John Wiley & Sons Ltd|___location=Chichester|pages=xii+474|chapter=§ 9.1|isbn=0-471-92840-2 |mr=1098018 }}
* {{Citation | last1=Eisenbud | first1=David | author1-link=David Eisenbud | title=Commutative algebra | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94268-1|mr=1322960 | year=1995 | volume=150}}
* {{Matsumura CA}}
* {{cite book|last=Stenström|first=Bo|title=Rings and modules of quotients|year=1971|publisher=Springer-Verlag|series=Lecture Notes in Mathematics, Vol. 237|___location=Berlin|pages=vii+136|isbn=978-3-540-05690-4|mr=0325663 }}
* [[Serge Lang]], "Algebraic Number Theory," Springer, 2000. pages 3–4.
|