Content deleted Content added
Link suggestions feature: 3 links added. |
supply requested citation |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Polynomial function of degree two}}
{{not to be confused with|Quartic function}}
In [[mathematics]], a '''quadratic function''' of a single [[variable (mathematics)|variable]] is a [[function (mathematics)|function]] of the form<ref name="wolfram">{{cite web |last=Weisstein |first=Eric Wolfgang |title=Quadratic Equation |url=https://mathworld.wolfram.com/QuadraticEquation.html |access-date=2013-01-06 |website=[[MathWorld]]}}</ref>
:<math>f(x)=ax^2+bx+c,\quad a \ne 0,</math>
Line 81 ⟶ 82:
\end{align}</math>
so the vertex, {{math|(''h'', ''k'')}}, of the parabola in standard form is
: <math> \left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right). </math><ref>{{
If the quadratic function is in factored form
:<math>f(x) = a(x - r_1)(x - r_2)</math>
Line 133 ⟶ 134:
===Upper bound on the magnitude of the roots===
The [[absolute value|modulus]] of the roots of a quadratic <math>ax^2+bx+c</math> can be no greater than <math>\frac{\max(|a|, |b|, |c|)}{|a|}\times \phi, </math> where <math>\phi</math> is the [[golden ratio]] <math>\frac{1+\sqrt{5}}{2}.</math><ref>{{Cite journal |last=Lord |first=Nick |date=2007-11-01 |title=Golden Bounds for the Roots of Quadratic Equations |url=https://doi.org/10.2307/40378441 |journal=[[The Mathematical Gazette]] |volume=91 |issue=522 |pages=549 |doi=10.1017/S0025557200182324 |jstor=40378441 |url-access=subscription }}</ref>
==The square root of a univariate quadratic function==
|