Plancherel theorem: Difference between revisions

Content deleted Content added
Precise formulation: Changed subsection heading to "Formal definition"
 
Line 12:
|background colour=#F5FFFA}}
 
== PreciseFormal formulationdefinition ==
The [[Fourier transform]] of an [[Lp space|''L''<sup>''1''</sup>]] function <math>f</math> on the [[real line]] <math>\mathbb R</math> is defined as the [[Lebesgue integral]]
<math display="block">\hat f(\xi) = \int_{\mathbb R} f(x)e^{-2\pi i x\xi}dx.</math>