Content deleted Content added
m Open access bot: doi updated in citation with #oabot. |
Citation bot (talk | contribs) Add: bibcode, url. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 32/990 |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 35:
| 2000 || [[Cartesian genetic programming]] || <ref>{{cite book |last1=Miller |first1=Julian F. |series=Natural Computing Series |chapter=Cartesian Genetic Programming |date=2011 |pages=17–34 |doi=10.1007/978-3-642-17310-3_2 |chapter-url=https://link.springer.com/chapter/10.1007/978-3-642-17310-3_2 |publisher=Springer |isbn=978-3-642-17309-7 |language=en}}</ref>
|-
| 2000 || Grammar-guided GP - Dynamic grammar pruning is applied in initialization|| <ref>{{cite book |last1=Ratle |first1=Alain |last2=Sebag |first2=Michèle |chapter=Genetic Programming and Domain Knowledge: Beyond the Limitations of Grammar-Guided Machine Discovery |title=Parallel Problem Solving from Nature PPSN VI |series=Lecture Notes in Computer Science |date=2000 |volume=1917 |pages=211–220 |doi=10.1007/3-540-45356-3_21 |chapter-url=https://link.springer.com/chapter/10.1007/3-540-45356-3_21 |publisher=Springer |isbn=978-3-540-41056-0 |url=https://hal.science/hal-00116116 |language=en}}</ref>
|-
| 2001 || [[Gene expression programming]] || <ref>{{cite arXiv |last1=Ferreira |first1=Candida |title=Gene Expression Programming: a New Adaptive Algorithm for Solving Problems |date=2001 |eprint=cs/0102027 }}</ref>
Line 49:
| 2017 || Statistical GP - statistical information used to generate well-structured subtrees || <ref>{{cite journal |last1=Amir Haeri |first1=Maryam |last2=Ebadzadeh |first2=Mohammad Mehdi |last3=Folino |first3=Gianluigi |title=Statistical genetic programming for symbolic regression |journal=Applied Soft Computing |date=1 November 2017 |volume=60 |pages=447–469 |doi=10.1016/j.asoc.2017.06.050 |url=https://www.sciencedirect.com/science/article/abs/pii/S1568494617303939 |issn=1568-4946|url-access=subscription }}</ref>
|-
| 2018 || Multi-dimensional GP - novel program representation for multi-dimensional features || <ref>{{cite journal |last1=La Cava |first1=William |last2=Silva |first2=Sara |last3=Danai |first3=Kourosh |last4=Spector |first4=Lee |last5=Vanneschi |first5=Leonardo |last6=Moore |first6=Jason H. |title=Multidimensional genetic programming for multiclass classification |journal=Swarm and Evolutionary Computation |date=1 February 2019 |volume=44 |pages=260–272 |doi=10.1016/j.swevo.2018.03.015
|}
Line 66:
Morgan Kaufmann,
1999.
ISBN 978-1558605107</ref><ref>Garnett Wilson and Wolfgang Banzhaf. [http://www.cs.mun.ca/~banzhaf/papers/eurogp08_clgp.pdf "A Comparison of Cartesian Genetic Programming and Linear Genetic Programming"]</ref> The commercial GP software ''Discipulus'' uses automatic induction of binary machine code ("AIM")<ref>([[Peter Nordin]], 1997, Banzhaf et al., 1998, Section 11.6.2-11.6.3)</ref> to achieve better performance. ''μGP''<ref>{{cite web|url=
Most representations have structurally noneffective code ([[intron]]s). Such non-coding genes may seem to be useless because they have no effect on the performance of any one individual. However, they alter the probabilities of generating different offspring under the variation operators, and thus alter the individual's [[variational properties]].
|