Content deleted Content added
(One intermediate revision by the same user not shown) | |||
Line 75:
Also for the Liouville function we have
: <math> \sum_{n=1}^\infty \frac{\lambda(n)}{\sqrt{n}}g(\log n) = \sum_{\rho}\frac{h( \gamma)\zeta(2 \rho )}{\zeta'( \rho)} + \frac{1}{2\zeta (1/2)}\int_{-\infty}^\infty dx \, g(x) .</math>
For the Euler-Phi function the explicit formula reads
: <math> \sum_{n=1}^{\infty} \frac{\varphi (n)}{\sqrt{n}}g(\log n) = \frac{6}{\pi ^2} \int_{-\infty}^\infty dx \, g(x) e^{3x/2} + \sum_\rho \frac{h( \gamma)\zeta(\rho -1 )}{\zeta '( \rho)} +
Assuming Riemann zeta function has only simple zeros.
|